scholarly journals Genetic predictors of destructive and constructive types of digital behavior among young people

Author(s):  
I. V. Abakumova ◽  
P. N. Ermakov ◽  
E. G. Denisova ◽  
I. V. Kupriyanov

Relevance. In the context of globalization, manifestations of extremism, negativism, aggression, asocial and dissocial behavior on the Internet tend to increase. However, biological determinants of destructive and constructive forms and transformations of users’ behavior are under debate.Intention – To study genetic predictors of digital behavior among young adults.Methodology. The study involved 115 people (51 males, 64 females) aged 18 to 22 years. In order to study the digital behavior, we used the author’s questionnaire “Strategies of digital behavior”. Molecular genetic analysis was performed through the DNA isolation from buccal epithelial cells. Statistical methods included comparative analysis, very simple structure method (VSS), principal component analysis, and ANOVA.Results and Discussion. It is shown that in most respondents active conditionally “constructive” digital behaviors prevail (45 %), active “destructive” and passive conditionally “constructive” digital behaviors are expressed almost equally (27 and 28 %, respectively). The active-destructive digital behavior is significantly more often observed in carriers of the combination of BDNF G/G, COMT G/A, and DRD2 T/T polymorphisms. For the constructive digital behaviors, neither biological determinants nor associations with the studied genes were observed.Conclusion. The above associations of COMT, BDNF, and DRD2 genes with the behavioral strategies of Internet users expand the existing knowledge about biological determinants of digital behavior.

2013 ◽  
Vol 20 (1-2) ◽  
pp. 1-8
Author(s):  
MM Rahman ◽  
L Rahman ◽  
SN Begum ◽  
F Nur

Random Amplified Polymorphic DNA (RAPD) assay was initiated for molecular genetic analysis among 13 F3 rice lines and their parents. Four out of 15 decamer random primers were used to amplify genomic DNA and the primers yielded a total of 41 RAPD markers of which 37 were considered as polymorphic with a mean of 9.25 bands per primer. The percentage of polymorphic loci was 90.24. The highest percentage of polymorphic loci (14.63) and gene diversity (0.0714) was observed in 05-6 F3 line and the lowest polymorphic loci (0.00) and gene diversity (0.00) was found in 05-12 and 05-15 F3 lines. So, relatively high level of genetic variation was found in 05-6 F3 line and it was genetically more diverse compared to others. The average co-efficient of gene differentiation (GST) and gene flow (Nm) values across all the loci were 0.8689 and 0.0755, respectively. The UPGMA dendrogram based on the Nei’s genetic distance differentiated the rice genotypes into two main clusters: PNR-519, 05-19, 05-14, 05-12 and 05-17 grouped in cluster 1. On the other hand, Baradhan, 05-9, 05-13, 05-11, 05-5, 05-6, 05-1, 05-4, 05-15 and 05-25 were grouped in cluster 2. The highest genetic distance (0.586) was found between 05-4 and 05-17 F3 lines and they remain in different cluster.DOI: http://dx.doi.org/10.3329/pa.v20i1-2.16839 Progress. Agric. 20(1 & 2): 1 – 8, 2009


2011 ◽  
Vol 7 (3) ◽  
pp. 225
Author(s):  
Gianfranco Sinagra ◽  
Michele Moretti ◽  
Giancarlo Vitrella ◽  
Marco Merlo ◽  
Rossana Bussani ◽  
...  

In recent years, outstanding progress has been made in the diagnosis and treatment of cardiomyopathies. Genetics is emerging as a primary point in the diagnosis and management of these diseases. However, molecular genetic analyses are not yet included in routine clinical practice, mainly because of their elevated costs and execution time. A patient-based and patient-oriented clinical approach, coupled with new imaging techniques such as cardiac magnetic resonance, can be of great help in selecting patients for molecular genetic analysis and is crucial for a better characterisation of these diseases. This article will specifically address clinical, magnetic resonance and genetic aspects of the diagnosis and management of cardiomyopathies.


Genetics ◽  
1986 ◽  
Vol 112 (2) ◽  
pp. 321-342
Author(s):  
Eugene M Rinchik ◽  
Liane B Russell ◽  
Neal G Copeland ◽  
Nancy A Jenkins

ABSTRACT Genes of the dilute-short ear (d-se) region of mouse chromosome 9 comprise an array of loci important to the normal development of the animal. Over 200 spontaneous, chemically induced and radiation-induced mutations at these loci have been identified, making it one of the most genetically well-characterized regions of the mouse. Molecular analysis of this region has recently become feasible by the identification of a dilute mutation that was induced by integration of an ecotropic murine leukemia virus genome. Several unique sequence cellular DNA probes flanking this provirus have now been identified and used to investigate the organization of wild-type chromosomes and chromosomes with radiation-induced d-se region mutations. As expected, several of these mutations are associated with deletions, and, in general, the molecular and genetic complementation maps of these mutants are concordant. Furthermore, a deletion break-point fusion fragment has been identified and has been used to orient the physical map of the d-se region with respect to the genetic complementation map. These experiments provide important initial steps for analyzing this developmentally important region at the molecular level, as well as for studying in detail how a diverse group of mutagens acts on the mammalian germline.


2016 ◽  
Vol 2 (3) ◽  
pp. 261-264 ◽  
Author(s):  
Anders Krogh Broendberg ◽  
Lisbeth Noerum Pedersen ◽  
Jens Cosedis Nielsen ◽  
Henrik Kjaerulf Jensen

2021 ◽  
Vol 22 (15) ◽  
pp. 7842
Author(s):  
Susanne Kohl ◽  
Britta Baumann ◽  
Francesca Dassie ◽  
Anja K. Mayer ◽  
Maria Solaki ◽  
...  

Achromatopsia (ACHM) is a rare autosomal recessively inherited retinal disease characterized by congenital photophobia, nystagmus, low visual acuity, and absence of color vision. ACHM is genetically heterogeneous and can be caused by biallelic mutations in the genes CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, or ATF6. We undertook molecular genetic analysis in a single female patient with a clinical diagnosis of ACHM and identified the homozygous variant c.778G>C;p.(D260H) in the CNGA3 gene. While segregation analysis in the father, as expected, identified the CNGA3 variant in a heterozygous state, it could not be displayed in the mother. Microsatellite marker analysis provided evidence that the homozygosity of the CNGA3 variant is due to partial or complete paternal uniparental isodisomy (UPD) of chromosome 2 in the patient. Apart from the ACHM phenotype, the patient was clinically unsuspicious and healthy. This is one of few examples proving UPD as the underlying mechanism for the clinical manifestation of a recessive mutation in a patient with inherited retinal disease. It also highlights the importance of segregation analysis in both parents of a given patient or especially in cases of homozygous recessive mutations, as UPD has significant implications for genetic counseling with a very low recurrence risk assessment in such families.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1701
Author(s):  
Lenka Štohlová Putnová ◽  
Radek Štohl ◽  
Martin Ernst ◽  
Kateřina Svobodová

Although inter-species hybrids between the red and sika deer can be phenotypically determined only exceptionally, there is the eventuality of identification via molecular genetic analysis. We used bi-parentally inherited microsatellite markers and a Bayesian statistical framework to re-examine the proportion of hybrids in the Czech red and sika deer populations. In total, 123 samples were collected, and the nuclear dataset consisted of 2668 allelic values. The number of alleles per locus ranged from 10 (BM1818) to 22 (BM888 and T193), yielding the mean of 16 alleles per locus across the deer. The mean allelic diversity of the red deer markedly exceeded that of the Japanese sika deer. Interspecific hybrids were detected, enabling us to confirm the genetic introgression of the sika deer into the red deer populations and vice versa in western Bohemia. The mean hybrid score equaled 10.6%, with 14.3% of the hybrids being among red deer–like individuals and 6.7% among sika-like ones. At two western Bohemian locations, namely, Doupovské hory and Slavkovský les, the total percentages of hybrid animals equaled 18.8 and 8.9, respectively. No red deer alleles were detected in the sika populations of the subregions of Kladská, Žlutice, and Lány. The NeighborNet network clearly separated the seven red and sika deer sampling populations according to the geography. The knowledge gained from the evaluated data is applicable in hunting management to reduce hybridization with the European deer.


Sign in / Sign up

Export Citation Format

Share Document