EVALUATION OF THE UNDERGROUND MINING IMPACT ON THE UNDERMINED ROCK MASS BY NUMERICAL SIMULATION ON THE "OLENIY RUCHEY" DEPOSIT

Author(s):  
I.E. Semenova ◽  
A.V. Zemtsovskii
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Fengyu Ren ◽  
Jing Zhang ◽  
Zhihua Ouyang ◽  
Hao Hu

Underground mining activities make the fractures in the natural rock mass develop randomly. The elastic modulus of the fractured rock mass Em is changed with the redistribution and development of the fractures. An equivalent model of fractured rock mass is structured to represent the hydraulic conductivity and the rock mass strain because of the continuum theory. Dimensional analysis is very useful to build relationship of the parameters in complex physical phenomena. Based on the engineering phenomenon of groundwater flowing into the goaf along the fracture in the rock mass, a fuzzy expression among parameters such as the parameter Em, the seepage flow Q, and the exposed area of the goaf A is obtained using dimensionless analysis. To calculate the parameter Em, the fuzzy relationship is then characterized by Darcy’s law and numerical simulation. Under the scripting environment of Python, an automated program to realize the numerical simulation of all scenarios is established, which also provides convenience for drawing the dimensionless flux charts. The results show that the parameter Em can be calculated by the dimensional analysis coupled with numerical simulation. In addition, the parameter Em decreases with the increase of the parameter Q, and the integrity of rock mass is also worse. Finally, a mine example is used to verify the feasibility of the method.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Rongxing He ◽  
Jing Zhang ◽  
Yang Liu ◽  
Delin Song ◽  
Fengyu Ren

Continuous mining of metal deposits leads the overlying strata to move, deform, and collapse, which is particularly obvious when open-pit mining and underground mining are adjacent. Once the mining depth of the adjacent open-pit lags severely behind the underground, the ultimate underground mining depth needs to be studied before the surface deformation extends to the open-pit mining area. The numerical simulation and the mechanical model are applied to research the ultimate underground mining depth of the southeast mining area in the Gongchangling Iron mine. In the numerical simulation, the effect of granular rock is considered and the granular rock in the collapse pit is simplified as the degraded rock mass. The ultimate underground mining depth can be obtained by the values of the indicators of surface movement and deformation. In the mechanical model, the modified mechanical model for the progressive hanging wall caving is established based on Hoke’s conclusion, which considers the lateral pressure of the granular rock. Using the limiting equilibrium analysis, the relationship of the ultimate underground mining depth and the range of surface caving can be derived. The results show that the ultimate underground mining depth obtained by the numerical simulation is greater than the theoretical calculation of the modified mechanical model. The reason for this difference may be related to the assumption of the granular rock in the numerical simulation, which increases the resistance of granular rock to the deformation of rock mass. Therefore, the ultimate underground mining depth obtained by the theoretical calculation is suggested. Meanwhile, the surface displacement monitoring is implemented to verify the reasonability of the ultimate underground mining depth. Monitoring results show that the indicators of surface deformation are below the critical value of dangerous movement when the underground is mined to the ultimate mining depth. The practice proves that the determination of the ultimate underground mining depth in this work can ensure the safety of the open-pit and underground synergetic mining.


2013 ◽  
Vol 58 (4) ◽  
pp. 1347-1357 ◽  
Author(s):  
Roman Ścigała

Abstract The characteristic of specialized computer programs has been presented, serving for identification of W. Budryk-S. Knothe theory parameters, used for description of asymptotic state of post-mining deformations, as well as for transient state. The software is the result of several years of authors’ work. It is a part of complete software system designed for forecasting of underground mining influences on the rock mass and land surface and graphical processing of calculations results. Apart from software description, a short example of its practical utilization has been attached.


Author(s):  
Xiaoming Lou ◽  
Mingwu Sun ◽  
Jin Yu

AbstractThe fissures are ubiquitous in deep rock masses, and they are prone to instability and failure under dynamic loads. In order to study the propagation attenuation of dynamic stress waves in rock mass with different number of fractures under confining pressure, nonlinear theoretical analysis, indoor model test and numerical simulation are used respectively. The theoretical derivation is based on displacement discontinuity method and nonlinear fissure mechanics model named BB model. Using ABAQUS software to establish a numerical model to verify theoretical accuracy, and indoor model tests were carried out too. The research shows that the stress attenuation coefficient decreases with the increase of the number of fissures. The numerical simulation results and experimental results are basically consistent with the theoretical values, which verifies the rationality of the propagation equation.


2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Piotr MAŁKOWSKI ◽  
Zbigniew NIEDBALSKI ◽  
Łukasz BEDNAREK

Ensuring the stability of mining excavations is a crucial aspect of underground mining. For thispurpose, appropriate shapes, dimensions, and support of workings are designed for the given mining andgeological conditions. However, for the proper assessment of the adequacy of the used technical solutions,and the calibration of the models used in the support design, it is necessary to monitor the behavior of theexcavation. It should apply to the rock mass and the support. The paper presents the automatic systemdesigned for underground workings monitoring, and the example of its use in the heading. Electronicdevices that measure the rock mass movements in the roof, the load on the standing support, and on bolts,the stress in the rock mass, are connected to the datalogger and can collect data for a long of time withoutany maintenance, also in hard-to-reach places. This feature enables the system to be widely used, inparticular, in excavations in the vicinity of exploitation, goafs, or in the area of a liquidated exploitationfield.


Sign in / Sign up

Export Citation Format

Share Document