scholarly journals Automatic Monitoring System Designed for Controlling the Stability of Underground Excavation

2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Piotr MAŁKOWSKI ◽  
Zbigniew NIEDBALSKI ◽  
Łukasz BEDNAREK

Ensuring the stability of mining excavations is a crucial aspect of underground mining. For thispurpose, appropriate shapes, dimensions, and support of workings are designed for the given mining andgeological conditions. However, for the proper assessment of the adequacy of the used technical solutions,and the calibration of the models used in the support design, it is necessary to monitor the behavior of theexcavation. It should apply to the rock mass and the support. The paper presents the automatic systemdesigned for underground workings monitoring, and the example of its use in the heading. Electronicdevices that measure the rock mass movements in the roof, the load on the standing support, and on bolts,the stress in the rock mass, are connected to the datalogger and can collect data for a long of time withoutany maintenance, also in hard-to-reach places. This feature enables the system to be widely used, inparticular, in excavations in the vicinity of exploitation, goafs, or in the area of a liquidated exploitationfield.

2012 ◽  
Vol 170-173 ◽  
pp. 589-592
Author(s):  
Yun Xiao ◽  
Xian Fu Li ◽  
Bin Tian ◽  
Jia Guo Wang

The disasters dynamics and security of phosphate are important problems in Phosphorus ore-deposit mining. So monitoring in unstable, hazardous areas and goaf can effectively focus on the activities of ground pressure. Based on mine-site exploration, engineering test, collection of physical and mechanical parameters for ore, research of geology and mining conditions, the main controlling factors of ground pressure were identified. Combining practical projects, the fuzzy matter-element model of stability evaluation on ground pressure in empty areas was built and analyzed, which showed the good agreement with the evaluation results and measured values. At the same time, based on the stability of underground mining partition, automatic monitoring system of phosphate was constructed, which may provide some useful advices for the safety study of ground pressure in phosphate rock mass.


2013 ◽  
Vol 807-809 ◽  
pp. 2332-2339
Author(s):  
Qiang Wang ◽  
Jin Yu Chen

One of the difficult issues in underground mining is the ground control of roadway subject to mining induced stresses. As a longwall face advances, the state of initial stresses dramatically changes. Accordingly, lateral abutment pressure forms on the pillar and frontal abutment pressure on the roof and lateral sides of the roadway. These pressures will lead to severe deformation and deterioration of the rock mass surrounding the entries. In this paper, a systemic study on this issue is proposed using the combination of numerical modeling and in-situ monitoring which was carried out at a coal mine in the Lu.An Group, China. The condition of stress redistribution caused by mining-induced stresses and the state of the surrounding rock mass of the roadway situated in front the work face are systematically investigated. Different patterns of support and reinforcement as well as their effects on the stability of the roadway are also presented.


2020 ◽  
Vol 177 ◽  
pp. 01007
Author(s):  
Vyacheslav Kutuev ◽  
Sergey Zharikov

The issue of joint production of drilling-and-blasting operations (DBO) is acute in the combined field workings with the condition of underground mining in the edge massif of the pit walls. Normally, the underground mine construction begins with the quarry depth approaching the end marks. In this situation, even if there is any volume for wall cutback, it is very insignificant and blasting works come closely to the limit circuit of the quarry, behind which the protected massif is located and underground workings is supposed to be carried out in the future. The main task in carrying out DBO under such conditions is to maintain the stability of this massif. Timely explosion shielding and the creation of contour fracture surfaces by applying controlled blasting reduce the negative explosion impact on the edge, yet do not always prevent the stress waves spread across the massif caused by seismic effect. Therefore, limiting the explosion seismic action in the border zone is as important for the massif stability as the professional pre-splitting.


Author(s):  
Yuli Fajarwati ◽  
Teuku Faisal Fathani ◽  
Fikri Faris ◽  
Wahyu Wilopo

ABSTRAKSungai Air Kotok di Kabupaten Lebong, Bengkulu memiliki litologi batuan yang rapuh akibat pengaruh panas bumi, kondisi tersebut menyebabkan rentan mengalami pergerakan massa tanah/batuan. Oleh karena itu, diperlukan upaya mitigasi untuk mengurangi risiko bencana dengan perencanaan bangunan pengendali aliran debris berupa sabo dam. Penelitian ini bertujuan untuk merencanakan desain sabo dam tipe conduit yang dirancang secara seri dan mengevaluasi stabilitas sabo dam berdasar SNI 2851:2015. Hasil perhitungan menunjukkan debit puncak untuk kala ulang 100 tahun sebesar 171,21 m3/detik. Empat seri sabo dam memiliki dimensi lebar pelimpah rerata ± 40 m, kedalaman aliran debris sebesar 1 m, dan tinggi pelimpah ialah 2,4 m. Stabilitas sabo dam saat banjir diperoleh faktor aman untuk stabilitas geser dan guling sebesar 3,46 ; 1,62. Adapun faktor aman terhadap pengaruh aliran debris untuk stabilitas geser dan guling adalah 3,30 ; 1,58. Berdasarkan hasil analisis, empat seri sabo dam tipe conduit yang dirancang mampu mengendalikan daya rusak banjir maupun aliran debris.Kata kunci: Hidraulika sungai, aliran sedimen, bangunan sabo, stabilitas sabo ABSTRACTAir Kotok River in Lebong Regency, Bengkulu Province has the lithology of weathered rock which is a result of geothermal process, this condition causes to be susceptible to land / rock mass movements. Therefore, the mitigation efforts are needed to reduce the risk from disaster by design debris flow control such as sabo dam. This study aims to design series of conduit type sabo dam and evaluate the stability based on SNI 2851: 2015. The calculation shows that the peak discharge for the 100-year return period is 171.21 m3 / sec. The four sabo dam series have dimensions of spill width of ± 40 m, debris flow depth of 1 m, and overflow height of 2.4 m. The stability of sabo dam has safety factor in flood condition for shear and overturning stability are 3.46; 1.62, while in a debris flow condition for shear and overturning stability are 3.30; 1.58. Based on the results, the four series of conduit sabo dam are able to control the destructive power of floods and debris flows.Key word: River hydraulic, sediment flow, sabo building, stability of sabo


Mining ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 155-166
Author(s):  
Huawei Xu ◽  
Derek B. Apel ◽  
Jun Wang ◽  
Chong Wei ◽  
Yashar Pourrahimian

Cemented rock fill (CRF) is commonly used in cut-and-fill stoping operations in underground mining. This allows for the maximum recovery of ore. Backfilling can improve stope stability in underground workings and then improve ground stability of the whole mine site. However, backfilling step scenarios vary from site to site. This paper presents the investigation of five different backfilling step scenarios and their impacts on the stability of stopes at four different mining levels. A comprehensive comparison of displacements, major principal stress, and Stress Concentration Factor (SCF) was conducted. The results show that different backfilling step scenarios have little influence on the final displacement for displacement in the stopes. Among the five backfilling scenarios, the major principal stress and stress concentration factor (SCF) have almost the same final results. The backfilling scenario SCN-1 is the optimum option among these five backfilling scenarios. It can immediately prevent the increase of the displacement and reduce the sidewall stress concentration, thereby preventing possible failures. Using the same strength of CRF can achieve the same effects among the four mining levels. Applying backfilling CRF of the same strength at different mining depths is acceptable and feasible to improve the stability of the stopes.


Author(s):  
Purwanto Purwanto

PT Gunung Marmer Raya  (PT GMR), a room and pillar underground marble mining is located about  73 km to the north from Makassar, in Desa Tabo-Tabo, Kecamatan Bungoro, Kabupaten Pangkep. In the mining location, discontinuities are found as joint structure across the production area. The purpose of this service is to make pillar redesign that can improve the stability of underground mine. These activities start with field observation, determining the rock characteristic through sample testing in the laboratory, classifying the rock mass using Q-system method, up to redesigning a form of implementation to increase the stability of the marble underground mine. According to calculation of rock mass classification using Q-System, the recommended buffering is systematic bolting and fiber reinforced sprayed concrete as thick as 5-6 cm with spacing between bolts of 2.2 meters, or systematic bolting without concrete layering with spacing between-bolt 1.8 meter. Joint monitoring, especially on pillars, need to be done routinely so joint movement could be anticipated for progressive movement. The existing dimensions of pillar 5 m x 5 m in length and width is not recommended due to the safety factor is under 1,0  (unstable condition). Based on observation and analytic calculation, for each pillar height of up to 11 meters the pillar is recommended to redesign with length and width 5 m x 9 m for the chain pillar (safety factor around 1.35-1.49); and 5 m x 12 m for barrier pillars (safety factor around 1.58-1.74). Key Words: Underground mining; room and pillar method; Q-system classification system; pillar stability; marble mining.


Author(s):  
Huawei Xu ◽  
Derek B. Apel ◽  
Jun Wang ◽  
Chong Wei ◽  
Yashar Pourrahimian

Cemented rock fill (CRF) is commonly used in cut-and-fill stoping operation in underground mining. This allows for the maximum recovery of ore. Backfilling can improve stope stability in underground workings, and then improve ground stability of the whole mine site. Backfilling step scenarios vary from site to site. This paper presents the investigation of five different backfilling step scenarios and their impacts on the stability of stopes at four different mining levels. A comprehensive comparison of displacements, major principal stress and stress concentration factor (SCF) was conducted. The results show that different backfilling step scenarios have little influence on the final displacement for displacement in the stopes. Among the five backfilling scenarios, the major principal stress and stress concentration factor (SCF) have almost the same final results. The backfilling scenario SCN-1 is the optimum option among these five backfilling scenarios. It can immediately prevent the increase of the displacement and reduce the sidewall stress concentration, thereby preventing possible failures. Using the same strength of CRF can achieve same effects among the four mining levels. Applying backfilling CRF of the same strength at different mining depths is acceptable and feasible to improve the stability of the stopes.


Sign in / Sign up

Export Citation Format

Share Document