scholarly journals Relationships between the Soil Exchangeable K and the Growth Responses of Vegetable Seedlings to K Fertilizer under Different Growing Seasons

1979 ◽  
Vol 48 (3) ◽  
pp. 295-300
Author(s):  
Nobuo SUGIYAMA ◽  
Masatoshi IWATA
HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 841B-841
Author(s):  
Michelle M. Leinfelder ◽  
Ian A. Merwin ◽  
Gennaro Fazio ◽  
Terence Robinson*

We are testing control tactics for apple replant disease (ARD) complex, a worldwide problem for fruit growers that is attributed to various biotic and abiotic soil factors. In Nov. 2001, “Empire” apple trees on five rootstocks (M.26, M.7, G.16, CG.6210, and G.30) were planted into four preplant soil treatments—commercial compost at 492 kg/ha soil-incorporated and 492 kg·ha-1 surface-applied), soil fumigation with Telone C-17 (400 L·ha-1 of 1,3-dichloropropene + chloropicrin injected at 30 cm depth five weeks prior to replanting), compost plus fumigant combination, and untreated controls—at an old orchard site in Ithaca, N.Y. Trees were replanted in rows perpendicular to, and either in or out of, previous orchard rows. Irrigation was applied as needed, and N-P-K fertilizer was applied in 2001 to all non-compost treatments to compensate for nutrients in the compost treatment. After two growing seasons, the rootstock factor has contributed most to tree-growth differences. CG.6210 rootstock supported greater growth in trunk diameter, central leader height, and lateral shoot growth (P < 0.05), regardless of preplant soil treatments and replant position. Trees on M.26 grew least over a two year period. Replant growth was greater in old grass lanes than in old tree rows, despite higher root-lesion nematode populations in previous grass lanes. Growth responses to preplant soil fumigation were negligible. Preplant compost did not increase tree growth during year one, but did increase lateral branch growth in year two. Results thus far suggest that replanting apple trees out of the old tree-row locations, and using ARD tolerant rootstocks such as CG.6210, may be more effective than soil fumigation for control of ARD in some old orchard sites.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 943
Author(s):  
Katri Nissinen ◽  
Virpi Virjamo ◽  
Antti Kilpeläinen ◽  
Veli-Pekka Ikonen ◽  
Laura Pikkarainen ◽  
...  

We studied the growth responses of boreal Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L. Karst.) and silver birch (Betula pendula Roth) seedlings to simulated climate warming of an average of 1.3 °C over the growing season in a controlled field experiment in central Finland. We had six replicate plots for elevated and ambient temperature for each tree species. The warming treatment lasted for the conifers for three growing seasons and for the birch two growing seasons. We measured the height and diameter growth of all the seedlings weekly during the growing season. The shoot and root biomass and their ratios were measured annually in one-third of seedlings harvested from each plot in autumn. After two growing seasons, the height, diameter and shoot biomass were 45%, 19% and 41% larger in silver birch seedlings under the warming treatment, but the root biomass was clearly less affected. After three growing seasons, the height, diameter, shoot and root biomass were under a warming treatment 39, 47, 189 and 113% greater in Scots pine, but the root:shoot ratio 29% lower, respectively. The corresponding responses of Norway spruce to warming were clearly smaller (e.g., shoot biomass 46% higher under a warming treatment). As a comparison, the relative response of height growth in silver birch was after two growing seasons equal to that measured in Scots pine after three growing seasons. Based on our findings, especially silver birch seedlings, but also Scots pine seedlings benefitted from warming, which should be taken into account in forest regeneration in the future.


2001 ◽  
Vol 137 (2) ◽  
pp. 195-203 ◽  
Author(s):  
T. R. RUPA ◽  
S. SRIVASTAVA ◽  
A. SWARUP ◽  
D. SINGH

The effect of 27 years of continuous cropping, fertilization and manuring on potassium (K) supplying capacity of a Typic Ustochrept soil profile from Delhi, India under a maize–wheat–cowpea (fodder) cropping system was investigated by employing the quantity/intensity (Q/I) approach. The predominant mineral suite of the <2 μm clay fraction was illite. The values of equilibrium activity ratio of K in solution in equilibrium with the soil (ARKE), labile pools of K (KL), immediately available K (ΔK0), K available with difficulty (KX) and water soluble+exchangeable K (1 M NH4OAc K) in different soil layers (0 to 105 cm) under different treatments were in the following order: 100% nitrogen, phosphorus and potassium (NPK)+farmyard manure (FYM) > 100% NPK > control (no fertilizer) > 100% N >100% NP. The ARKE value, a measure of availability or intensity of labile K in soil decreased with profile depth due to greater K fixation by specific sites in the lower layers. The quantity of specifically sorbed K (KX) and the potential buffering capacity of soil (PBCK) showed a increasing trend with soil depth. In soil without K fertilizer treatments (control, 100% N and 100% NP) about 100% of the total K uptake by crops was from non-exchangeable soil K reserve as compared to 49·5 and 32·2% when annually 84 kg K/ha and 84 kg K/ha+FYM at the rate of 15 t/ha were applied. The results showed the greatest depletion of non-exchangeable K reserves in the plots which did not receive K fertilization. To ensure sustained crop production under intensive cropping, application of recommended dose of NPK plus FYM is required.


1975 ◽  
Vol 84 (3) ◽  
pp. 513-524 ◽  
Author(s):  
T. M. Addiscott ◽  
A. E. Johnston

SUMMARYSoils from long-term experiments at Rothamsted and Woburn were cropped for very long periods (up to 5½ years) with ryegrass in pots. Measurements of the potassium taken up by the ryegrass that was not exchangeable to ammonium acetate and the kinetics of its release both suggested two categories of non-exchangeable K. Of these, the first to be released was closely related to the initial exchangeable K, whilst the second, though partly related to the initial exchangeable K was also influenced by the clay percentage. Release of both categories may have been controlled by diffusion, because both showed good relationships between the quantity released and time. It is suggested that the first category may be K ‘trapped’ when K fertilizer added in the field decreased the interlamellar spaces of vermiculite layers in clay particles, whilst the second may simply be the ‘native’ K (described by others) present in clay and other minerals in the soil.Resowing the soils (without drying them) during the later stages of K. uptake suggested that the ability of the old ryegrass to absorb K was not a factor limiting K uptake even after long growth.When the ryegrass ceased to grow, the mean K potentials in the exhausted soils were close to the ‘uptake potential’ for ryegrass derived earlier by considering K uptakes from soils in relation to the quantity/potential relationships of the soils. Drying and rewetting the exhausted soils released K; the amount was influenced in one group of soils by the exchangeable K in the moist exhausted soil and in another group by the clay percentage.


1983 ◽  
Vol 52 (1) ◽  
pp. 22-26
Author(s):  
Nobuo SUGIYAMA ◽  
Michio SHIBATA

Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 539
Author(s):  
Daniel Rosa ◽  
Antreas Pogiatzis ◽  
Pat Bowen ◽  
Vasilis Kokkoris ◽  
Andrew Richards ◽  
...  

(1) Background: Arbuscular mycorrhizal (AM) fungi are symbiotic organisms that help plants acquire nutrients from the soil in exchange for photosynthetic carbon. Commercial AM fungal inoculants are widely available and are used extensively in agriculture including wine grape production. However, positive growth responses from inoculants are more consistent in the greenhouse compared to the field. (2) Methods: We grew three grapevine rootstocks with and without an AM fungal inoculant in the greenhouse for one year, then they were transplanted to the field for two years. To quantify the establishment of the inoculant, we analyzed root samples with a digital PCR assay. (3) Results: We show that AM fungal inoculation increased biomass production only in the greenhouse. After two growing seasons in the field, the commercial inoculant colonized roots but did not increase biomass production compared to uninoculated rootstocks. (4) Conclusions: This study highlights that AM fungal inoculants do not always promote growth of grapevines in the field. Future research should focus on inoculant strains designed for viticulture applications and take rootstock into consideration to maximize their efficacy.


2000 ◽  
Vol 30 (11) ◽  
pp. 1778-1787 ◽  
Author(s):  
C F Scagel ◽  
R G Linderman ◽  
R K Scagel

Commercially available plant growth regulators (PGRs) or moisture retention gels, applied to the roots of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) before planting, can modify indole-3-acetic acid (IAA) levels in roots, root growth responses, and tree survival. We treated two different 1+0 stock types (PSB313B and PSB323) of Douglas-fir with indole-butyric acid (IBA), ethephon (Ethrel®), alginate, or a combination of IBA and alginate. New root growth and IAA levels in roots were measured 2 weeks after planting, and aboveground growth and tree survival were monitored over 10 growing seasons after planting. Treatment with IBA or the combination of IBA and alginate increased IAA conjugate and free IAA levels in roots, root growth, and tree survival. Alginate treatment alone increased new root growth and tree survival, but did not increase free IAA levels in roots. Ethrel® treatment increased free IAA levels and root growth, but had no effect on IAA conjugates or tree survival. A cost analysis suggests that use of certain PGRs or alginate decreases the cost required to attain target stocking and increased tree size. Our results suggest that application of PGRs or other root-promoting materials to the roots of Douglas-fir before planting has the potential to be a cost-beneficial method for increasing root growth and tree survival.


Sign in / Sign up

Export Citation Format

Share Document