scholarly journals Effect of light on anthocyanin content of seedlings of benitade (Polygonum hydropiper L.)

1981 ◽  
Vol 50 (1) ◽  
pp. 44-52 ◽  
Author(s):  
Hiroyuki Miura ◽  
Masatoshi Iwata
1995 ◽  
Vol 120 (5) ◽  
pp. 785-789 ◽  
Author(s):  
Maria Claudia Dussi ◽  
David Sugar ◽  
Ronald E. Wrolstad

The anthocyanin in `Sensation Red Bartlett' pear skin was characterized and quantified, and the effect of light quality on fruit color development was evaluated. Anthocyanin concentration was related to fruit chromaticity values. Pigments were analyzed using high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC). One of two spots detected in the TLC chromatogram did not change color with molybdate sprays, indicating the possible presence of peonidin. HPLC analysis confirmed the presence of a major and a minor pigment, which co-eluted with cyanidin 3-galactoside and peonidin 3-galactoside. Monomeric anthocyanins in the pear skin extract were 6.83 mg/100 g of fruit peel. To study light quality, gelatin filters allowing passage of different wavelengths of-light were attached over the exposed side of `Sensation Red Bartlett' pears 1 month before harvest. Chromaticity was recorded before the filters were attached and after their removal at harvest using the Commission Internationale del'Eclairage (L*, a*, and b*) color space coordinates. Following color measurements, anthocyanin was extracted from individual skin disks. Skin beneath all filters yielded less hue than the control. Wavelengths that transmit above 600 nm had the largest effect on chroma, a*, and b* values. Fruit wrapped in aluminum foil to obscure all light had the highest luminosity. Wavelengths from 400 to 500 nm gave darker, less chromatic, and redder pear fruit. All treatments yielded higher anthocyanin content than the control. There was a tendency toward increased anthocyanin content with longer wavelengths. The simple linear regression of the log anthocyanin content on L* value and (a*/b*) provided an R2 = 0.41.


Rekayasa ◽  
2016 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Eko Setiawan

<p><em>The objective of this study was to understand the light intensity conditions of mangosteen trees to various branch position in canopy. The experiment was conducted using mangosteen trees grown on commercial orchard in Bogor, Indonesia during August - October 2013. Mangosteen trees of three different ages, young (20 years), middle (35 years), and old ages (50 years), each of five trees, are selected for study. Canopy of each tree divided into 9 sectors. The highest light intensity in full sunlight conditions was found in sector 9 were 8.07; 7.53; and 7.74 μ mol M-2 s-1, in young, middle and old age, respectively, in contrast, the lowest light intensity in sector 1 were 0.53; 0.42; and 0.49 μ mol M-2 s-1, in young, middle and old age, respectively. Chlorophyll a/b ratio in mangosteen leaves increase gradually as an increase of age, each in young, middle, and old age were 2.20; 2.25; and 2.95, respectively. The highest chlorophyll index was in branch with fruit production, than decrease in dormancy condition, whereas the lowest chlorophyll index in new flush or vegetative condition.</em><em></em></p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247380
Author(s):  
Nafiseh Yavari ◽  
Rajiv Tripathi ◽  
Bo-Sen Wu ◽  
Sarah MacPherson ◽  
Jaswinder Singh ◽  
...  

The impacts of wavelengths in 500–600 nm on plant response and their underlying mechanisms remain elusive and required further investigation. Here, we investigated the effect of light quality on leaf area growth, biomass, pigments content, and net photosynthetic rate (Pn) across three Arabidopsis thaliana accessions, along with changes in transcription, photosynthates content, and antioxidative enzyme activity. Eleven-leaves plants were treated with BL; 450 nm, AL; 595 nm, RL; 650 nm, and FL; 400–700 nm as control. RL significantly increased leaf area growth, biomass, and promoted Pn. BL increased leaf area growth, carotenoid and anthocyanin content. AL significantly reduced leaf area growth and biomass, while Pn remained unaffected. Petiole elongation was further observed across accessions under AL. To explore the underlying mechanisms under AL, expression of key marker genes involved in light-responsive photosynthetic reaction, enzymatic activity of antioxidants, and content of photosynthates were monitored in Col-0 under AL, RL (as contrast), and FL (as control). AL induced transcription of GSH2 and PSBA, while downregulated NPQ1 and FNR2. Photosynthates, including proteins and starches, showed lower content under AL. SOD and APX showed enhanced enzymatic activity under AL. These results provide insight into physiological and photosynthetic responses to light quality, in addition to identifying putative protective-mechanisms that may be induced to cope with lighting-stress in order to enhance plant stress tolerance.


1989 ◽  
Vol 58 (1) ◽  
pp. 123-129 ◽  
Author(s):  
Hiroyuki MIURA ◽  
Mitsuo SHIMIZU ◽  
Akio TAZUKE ◽  
Masatoshi IWATA

Author(s):  
C. S. Bricker ◽  
S. R. Barnum ◽  
B. Huang ◽  
J. G. Jaworskl

Cyanobacteria are Gram negative prokaryotes that are capable of oxygenic photosynthesis. Although there are many similarities between eukaryotes and cyanobacteria in electron transfer and phosphorylation during photosynthesis, there are two features of the photosynthetic apparatus in cyanobacteria which distinguishes them from plants. Cyanobacteria contain phycobiliproteins organized in phycobilisomes on the surface of photosynthetic membrane. Another difference is in the organization of the photosynthetic membranes. Instead of stacked thylakolds within a chloroplast envelope membrane, as seen In eukaryotes, IntracytopIasmlc membranes generally are arranged in three to six concentric layers. Environmental factors such as temperature, nutrition and light fluency can significantly affect the physiology and morphology of cells. The effect of light Intensity shifts on the ultrastructure of Internal membrane in Anabaena variabilis grown under controlled environmental conditions was examined. Since a major constituent of cyanobacterial thylakolds are lipids, the fatty acid content also was measured and correlated with uItrastructural changes. The regulation of fatty acid synthesis in cyanobacteria ultimately can be studied if the fatty acid content can be manipulated.


Author(s):  
Pınar Ercan ◽  
Sedef Nehir El

Abstract. The goals of this study were to determine and evaluate the bioaccessibility of total anthocyanin and procyanidin in apple (Amasya, Malus communis), red grape (Papazkarası, Vitis vinifera) and cinnamon (Cassia, Cinnamomum) using an in vitro static digestion system based on human gastrointestinal physiologically relevant conditions. Also, in vitro inhibitory effects of these foods on lipid (lipase) and carbohydrate digestive enzymes (α-amylase and α-glucosidase) were performed with before and after digested samples using acarbose and methylumbelliferyl oleate (4MUO) as the positive control. While the highest total anthocyanin content was found in red grape (164 ± 2.51 mg/100 g), the highest procyanidin content was found in cinnamon (6432 ± 177.31 mg/100 g) (p < 0.05). The anthocyanin bioaccessibilities were found as 10.2 ± 1%, 8.23 ± 0.64%, and 8.73 ± 0.70% in apple, red grape, and cinnamon, respectively. The procyanidin bioaccessibilities of apple, red grape, and cinnamon were found as 17.57 ± 0.71%, 14.08 ± 0.74% and 18.75 ± 1.49%, respectively. The analyzed apple, red grape and cinnamon showed the inhibitory activity against α-glucosidase (IC50 544 ± 21.94, 445 ± 15.67, 1592 ± 17.58 μg/mL, respectively), α-amylase (IC50 38.4 ± 7.26, 56.1 ± 3.60, 3.54 ± 0.86 μg/mL, respectively), and lipase (IC50 52.7 ± 2.05, 581 ± 54.14, 49.6 ± 2.72 μg/mL), respectively. According to our results apple, red grape and cinnamon have potential to inhibit of lipase, α-amylase and α-glucosidase digestive enzymes.


Sign in / Sign up

Export Citation Format

Share Document