scholarly journals Effect of Light Intensity to Chlorophyll and Anthocyanin Content in Mangosteen Leaf

Rekayasa ◽  
2016 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Eko Setiawan

<p><em>The objective of this study was to understand the light intensity conditions of mangosteen trees to various branch position in canopy. The experiment was conducted using mangosteen trees grown on commercial orchard in Bogor, Indonesia during August - October 2013. Mangosteen trees of three different ages, young (20 years), middle (35 years), and old ages (50 years), each of five trees, are selected for study. Canopy of each tree divided into 9 sectors. The highest light intensity in full sunlight conditions was found in sector 9 were 8.07; 7.53; and 7.74 μ mol M-2 s-1, in young, middle and old age, respectively, in contrast, the lowest light intensity in sector 1 were 0.53; 0.42; and 0.49 μ mol M-2 s-1, in young, middle and old age, respectively. Chlorophyll a/b ratio in mangosteen leaves increase gradually as an increase of age, each in young, middle, and old age were 2.20; 2.25; and 2.95, respectively. The highest chlorophyll index was in branch with fruit production, than decrease in dormancy condition, whereas the lowest chlorophyll index in new flush or vegetative condition.</em><em></em></p>

2017 ◽  
Vol 16 (1) ◽  
pp. 15
Author(s):  
Muhammad Fakhri ◽  
Nasrullah Bai Arifin ◽  
Anik Martina Hariati ◽  
Ating Yuniarti

<p class="Pa3"><strong>ABSTRACT </strong></p><p> </p><p class="Pa5"><em>Nannochloropsis </em>sp. has been identified as sources of live feed and pigment in aquaculture. To increase the production, the optimal environmental conditions for microalgae are required. Light intensity is one of the important factors that significantly affects the biomass and pigment of microalgae. The study aimed to determine the effect of light intensity (1,500; 3,000; and 4,500 lux) on growth, biomass production, chlorophyll-a, and carotenoid content of <em>Nannochloropsis </em>sp. strain BJ17. The results showed that different light intensities significantly affected the growth, biomass, chlorophyll-a and carotenoid contents of <em>Nannochloropsis </em>sp. strain BJ17. Increasing light intensity resulted in the increase of the growth rate, biomass, chlorophyll-a, and carotenoid contents of <em>Nannochloropsis </em>sp. strain BJ17. The cell achieved the highest specific growth rate of 1.729 %/day and the cell concentration of 43.333×106 cell/mL at a light intensity of 4,500 lux. The highest chlorophyll-a and carotenoid concentrations of algae were obtained at 4,500 lux (8.304 μg/mL and 3.892 μg/mL, respectively). This study suggested that increasing light intensity led to the increase in the growth, biomass, chlorophyll-a, and carotenoid content of <em>Nannochloropsis </em>sp. strain BJ17.</p><p> </p><p class="Pa5">Keywords: carotenoid, chlorophyll, biomass, growth rate, light intensity</p><p> </p><p> </p><p class="Pa3"><strong>ABSTRAK </strong></p><p> </p><p class="Pa5"><em>Nannochloropsis </em>sp. diketahui sebagai sumber pakan alami dan pigmen pada budidaya perikanan. Budidaya pada kondisi lingkungan yang optimal diperlukan untuk meningkatkan produksi mikroalga. Intensitas cahaya merupakan salah satu faktor esensial yang secara signifikan mempengaruhi biomassa dan pigmen mikroalga. Tujuan penelitian ini adalah untuk menentukan pengaruh intensitas cahaya yang berbeda (1.500, 3.000, and 4.500 lux) terhadap pertumbuhan, produksi biomassa, klorofil-a, dan karotenoid <em>Nannochloropsis </em>sp. strain BJ17. Hasil menunjukkan bahwa intensitas cahaya yang berbeda berpengaruh secara signifikan terhadap pertumbuhan, biomassa dan klorofil-a dan karotenoid <em>Nannochloropsis </em>sp. strain BJ17. Semakin tinggi intensitas cahaya maka laju pertumbuhan, biomassa, kandungan klorofil-a dan total karotenoid <em>Nannochloropsis </em>sp. strain BJ17 semakin tinggi. Laju pertumbuhan spesifik tertinggi 1,729%/hari dan konsentrasi sel maksimum tertinggi 43,333×106 sel/mL dihasilkan pada intensitas cahaya 4.500 lux. Konsentrasi klorofil-a (8,304 μg/mL) dan karotenoid (3,892 μg/mL) tertinggi juga diperoleh pada intensitas cahaya 4.500 lux. Studi ini menunjukkan bahwa peningkatan intensitas cahaya berperan dalam meningkatkan pertumbuhan, produksi biomassa, klorofil-a, dan karotenoid <em>Nannochloropsis </em>sp. strain BJ17.</p><p> </p><p>Kata kunci: karotenoid, klorofil, biomassa, pertumbuhan, intensitas cahaya</p>


2020 ◽  
Vol 235 ◽  
pp. 106515 ◽  
Author(s):  
Pataporn Kuanui ◽  
Suchana Chavanich ◽  
Voranop Viyakarn ◽  
Makoto Omori ◽  
Toshihiko Fujita ◽  
...  

1963 ◽  
Vol 14 (2) ◽  
pp. 148 ◽  
Author(s):  
GF Humphrey

Gymnodinium, Nitzschia closterium, and Skeletonema costatum were grown in the presence of bacteria, and N. closterium in the absence of bacteria, for 7 weeks. Each week samples were analysed by the Richards-Thompson method for chlorophyll a and c. Maximum cell numbers were reached in 1-3 weeks. Gymnodinium grew better at 680 f.c. than at 420 f.c. but the reverse was true of Nitzschia and Skeletonema. The chlorophyll content of the Gymnodinium cultures was similar at each light intensity but Nitzschia gave more chlorophyll at 420 f.c. With Skeletonema there was no consistent effect of light. During the initial growth phase, Gymnodinium contained 0.33-0.87 �g chlorophyll a and 0.56-1.88 pg chlorophyll c per million cells. The corresponding figures for Skeletonema were 0.03-0.06 and 0.03-0.08, and for Nitzschia 0.13-1.08 and 0.11-0.87. The ratio of c to a varied from 1.30 to 1.84 for Gymnodinium, 0.69 to 1 .61 for Skeletonema, and 0.44 to 2.21 for Nitzschia. These ratios are all less than the maximum (3.3) found for natural populations of phytoplankton from the Coral and Tasman Seas. There was no evidence in the culture experiments that chlorophyll c breaks down more slowly than a and thus accumulates in old populations.


1969 ◽  
Vol 75 (4) ◽  
pp. 383-389
Author(s):  
Luis R. Santiago-Santos ◽  
Arturo Cedeño-Maldonado

An experiment was performed at the Alzamora Experiment Farm of the Mayagüez Campus, University of Puerto Rico, to evaluate the effect of light intensity on the growth and flowering of spiny coriander, Eryngium foetidum L. The study was divided in two phases: 1) the seedling phase, which lasted from seeding to the first harvest, and 2) the second phase, from the first to the second harvest. All plants were placed under cover of transparent polyethylene. Three of the treatments were covered by Saran plastic with different densities to reduce light intensity to 47, 63, and 73%. Treatments were arranged in a randomized complete block design with three replications. A significant delay in flowering was observed in plants grown at 63 and 73% shade. An increase was observed in fresh weight of leaves of plants grown at 63 and 73% shade levels vs those in full sunlight. Plants grown under shade had fewer inflorescences with lower fresh weight than plants grown under full sunlight. No significant differences were found on leof number between plants grown at different light intensities. Leaf chlorophyll content of spiny coriander increased in plants grown under low light intensities.


Author(s):  
C. S. Bricker ◽  
S. R. Barnum ◽  
B. Huang ◽  
J. G. Jaworskl

Cyanobacteria are Gram negative prokaryotes that are capable of oxygenic photosynthesis. Although there are many similarities between eukaryotes and cyanobacteria in electron transfer and phosphorylation during photosynthesis, there are two features of the photosynthetic apparatus in cyanobacteria which distinguishes them from plants. Cyanobacteria contain phycobiliproteins organized in phycobilisomes on the surface of photosynthetic membrane. Another difference is in the organization of the photosynthetic membranes. Instead of stacked thylakolds within a chloroplast envelope membrane, as seen In eukaryotes, IntracytopIasmlc membranes generally are arranged in three to six concentric layers. Environmental factors such as temperature, nutrition and light fluency can significantly affect the physiology and morphology of cells. The effect of light Intensity shifts on the ultrastructure of Internal membrane in Anabaena variabilis grown under controlled environmental conditions was examined. Since a major constituent of cyanobacterial thylakolds are lipids, the fatty acid content also was measured and correlated with uItrastructural changes. The regulation of fatty acid synthesis in cyanobacteria ultimately can be studied if the fatty acid content can be manipulated.


2019 ◽  
Vol 64 (11) ◽  
pp. 1007-1014
Author(s):  
Tong XU ◽  
◽  
Jia-Hui ZHANG ◽  
Zhao-Ying LIU ◽  
Xuan LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document