scholarly journals Histological Observations on the Chilling Injury of Cucumber Fruit during Cold Storage

1982 ◽  
Vol 51 (2) ◽  
pp. 231-236 ◽  
Author(s):  
Joung Kil RHEE ◽  
Masatoshi IWATA
2021 ◽  
Vol 22 (9) ◽  
pp. 4437
Author(s):  
Han Ryul Choi ◽  
Min Jae Jeong ◽  
Min Woo Baek ◽  
Jong Hang Choi ◽  
Hee Cheol Lee ◽  
...  

Cold storage of peach fruit at low temperatures may induce chilling injury (CI). Pre-storage 1-MCP and high CO2 treatments were reported among the methods to ameliorate CI and reduce softening of peach fruit. However, molecular data indicating the changes associated with pre-storage 1-MCP and high CO2 treatments during cold storage of peach fruit are insufficient. In this study, a comparative analysis of the difference in gene expression and physico-chemical properties of fruit at commercial harvest vs. stored fruit for 12 days at 0 °C (cold-stored (CS), pre-storage 1-MCP+CS, and pre-storage high CO2+CS) were used to evaluate the variation among treatments. Several genes were differentially expressed in 1-MCP+CS- and CO2+CS-treated fruits as compared to CS. Moreover, the physico-chemical and sensory data indicated that 1-MCP+CS and CO2+CS suppressed CI and delayed ripening than the CS, which could lead to a longer storage period. We also identified the list of genes that were expressed commonly and exclusively in the fruit treated by 1-MCP+CS and CO2+CS and compared them to the fruit quality parameters. An attempt was also made to identify and categorize genes related to softening, physiological changes, and other ripening-related changes. Furthermore, the transcript levels of 12 selected representative genes from the differentially expressed genes (DEGs) in the transcriptome analysis were confirmed via quantitative real-time PCR (qRT-PCR). These results add information on the molecular mechanisms of the pre-storage treatments during cold storage of peach fruit. Understanding the genetic response of susceptible cultivars such as ‘Madoka’ to CI-reducing pre-storage treatments would help breeders release CI-resistant cultivars and could help postharvest technologists to develop more CI-reducing technologies.


2005 ◽  
Vol 45 (12) ◽  
pp. 1635 ◽  
Author(s):  
A. Uthairatanakij ◽  
P. Penchaiya ◽  
B. McGlasson ◽  
P. Holford

Low temperature disorders of nectarines are thought to be expressions of chilling injury. Chilling injury is a form of stress usually associated with increased synthesis of ethylene and its immediate precursor, aminocyclopropane-1-carboxylic acid (ACC). However, other mechanisms for the development of chilling injury have been proposed. To help determine the nature of the processes leading to chilling injury in nectarines (Prunus persica) and how the gaseous composition of the storage atmosphere effects the development of low temperature disorders, levels of ACC and conjugated ACC were measured in fruit of the cv. Arctic Snow. These compounds were measured in fruit ripened at 20°C immediately after harvest, in fruit on removal from cold storage and in fruit ripened at 20°C following cold storage. During storage, fruit were kept at 0°C in the 4 following atmospheres: air; air + 15% CO2; air + 15 µL/L ethylene; and air + 15% CO2 + 15 µL/L ethylene. Concentrations of ACC remained low in all treatments and no significant changes in ACC levels due to added ethylene or CO2 were observed. Concentrations of conjugated ACC were about 10-times that of ACC and again were not influenced by the composition of the storage atmosphere. No significant changes in either ACC or conjugated ACC were observed until after flesh bleeding, the major symptoms of low temperature disorder expressed in these fruit, had begun to appear. It was concluded that disorders in nectarines stored at low temperatures are not a stress response involving a disruption of ethylene metabolism but may be associated with differential changes in the metabolism of enzymes associated with normal ripening.


1994 ◽  
Vol 119 (3) ◽  
pp. 524-528 ◽  
Author(s):  
Rafael Alique ◽  
José P. Zamorano ◽  
Ma Luisa Calvo ◽  
Carmen Merodio ◽  
José L. De la Plaza

`Fino de Jete' cherimoya fruit were stored at 20, 10, 8, or 6C, 80% relative humidity. Two rises of CO2 production and an ethylene rise following the first peak of respiration were obtained in fruit held at 20C. The ripe stage coincided with the onset of the second respiratory rise. Soluble sugar and organic acid concentration were maximal, and flesh firmness was 18 N in ripe fruit. Lower temperature reduced respiration rate and ethylene production; however, some stimulation of ethylene synthesis was observed at 10C. Cherimoyas ripened to edible condition during 6 days at 10C, but fruit maintained at 8C for up to 12 days required transfer to 20C to ripen properly. Our results suggest that high increases in CO2 are not sufficient to complete cherimoya fruit ripening without the concurrent rise in ethylene production. Citric acid accumulation, inhibition of ethylene synthesis, and reduced accumulation of sucrose were observed during storage at 6C. Removal to 20C after 12 days at 6C resulted in no ripening, almost complete inhibition of ethylene synthesis, and severe skin browning. Thus, 8C is the lowest tolerable temperature for prolonged cold storage of cherimoya `Fino de Jete'. Fruit can be held at 8C for up to 12 days without damage from chilling injury.


2020 ◽  
Vol 50 (5) ◽  
Author(s):  
Rafaely das Chagas Lameira ◽  
Bárbara Marçon Pereira da Silva ◽  
Silvia Regina de Toledo Valentini ◽  
Patrícia Cia ◽  
Ilana Urbano Bron

ABSTRACT: Despite the fact that cold storage and modified atmosphere techniques have already been studied for fresh cut Star fruit, little has been done considering the whole fruit. Besides that, each cultivar has its peculiarities, so the efficiency of combined postharvest treatments should be studied. The objective of this study was to evaluate the effect of polyvinyl chloride (PVC), 8.5 µm thick and low-density polyethylene (LDPE), 33 µm thick associated with cold storage (10 ± 1 °C and 5 ± 1 °C / 85 ± 5% RH) on the conservation of ‘Malasia’ Star fruit. Storage at 25 oC maintained Star fruit overall quality, regardless of the film type, up to four days. The weight loss was higher in fruit packed with PVC, but this fact was not noticed by the sensory analysis. The storage in 5 and 10 oC did not caused chilling injury but fruit presented retention of yellow color development and firmness reduction; these aspects were positively assessed by the sensory analysis. The film type did not influence the conservation of the fruit. The storage at 5 and 10 °C, regardless of the package film, prolonged ‘Malasia’ star fruit shelf life up to 16 days, followed by two days at 25 °C.


Sign in / Sign up

Export Citation Format

Share Document