Impact of rainfall rate and temperature during fruit development on chilling injury of Queen pineapples (Ananas comosus L.) during cold storage

Author(s):  
Pannipa Youryon ◽  
Suriyan Supapvanich
2021 ◽  
Vol 22 (9) ◽  
pp. 4437
Author(s):  
Han Ryul Choi ◽  
Min Jae Jeong ◽  
Min Woo Baek ◽  
Jong Hang Choi ◽  
Hee Cheol Lee ◽  
...  

Cold storage of peach fruit at low temperatures may induce chilling injury (CI). Pre-storage 1-MCP and high CO2 treatments were reported among the methods to ameliorate CI and reduce softening of peach fruit. However, molecular data indicating the changes associated with pre-storage 1-MCP and high CO2 treatments during cold storage of peach fruit are insufficient. In this study, a comparative analysis of the difference in gene expression and physico-chemical properties of fruit at commercial harvest vs. stored fruit for 12 days at 0 °C (cold-stored (CS), pre-storage 1-MCP+CS, and pre-storage high CO2+CS) were used to evaluate the variation among treatments. Several genes were differentially expressed in 1-MCP+CS- and CO2+CS-treated fruits as compared to CS. Moreover, the physico-chemical and sensory data indicated that 1-MCP+CS and CO2+CS suppressed CI and delayed ripening than the CS, which could lead to a longer storage period. We also identified the list of genes that were expressed commonly and exclusively in the fruit treated by 1-MCP+CS and CO2+CS and compared them to the fruit quality parameters. An attempt was also made to identify and categorize genes related to softening, physiological changes, and other ripening-related changes. Furthermore, the transcript levels of 12 selected representative genes from the differentially expressed genes (DEGs) in the transcriptome analysis were confirmed via quantitative real-time PCR (qRT-PCR). These results add information on the molecular mechanisms of the pre-storage treatments during cold storage of peach fruit. Understanding the genetic response of susceptible cultivars such as ‘Madoka’ to CI-reducing pre-storage treatments would help breeders release CI-resistant cultivars and could help postharvest technologists to develop more CI-reducing technologies.


2005 ◽  
Vol 45 (12) ◽  
pp. 1635 ◽  
Author(s):  
A. Uthairatanakij ◽  
P. Penchaiya ◽  
B. McGlasson ◽  
P. Holford

Low temperature disorders of nectarines are thought to be expressions of chilling injury. Chilling injury is a form of stress usually associated with increased synthesis of ethylene and its immediate precursor, aminocyclopropane-1-carboxylic acid (ACC). However, other mechanisms for the development of chilling injury have been proposed. To help determine the nature of the processes leading to chilling injury in nectarines (Prunus persica) and how the gaseous composition of the storage atmosphere effects the development of low temperature disorders, levels of ACC and conjugated ACC were measured in fruit of the cv. Arctic Snow. These compounds were measured in fruit ripened at 20°C immediately after harvest, in fruit on removal from cold storage and in fruit ripened at 20°C following cold storage. During storage, fruit were kept at 0°C in the 4 following atmospheres: air; air + 15% CO2; air + 15 µL/L ethylene; and air + 15% CO2 + 15 µL/L ethylene. Concentrations of ACC remained low in all treatments and no significant changes in ACC levels due to added ethylene or CO2 were observed. Concentrations of conjugated ACC were about 10-times that of ACC and again were not influenced by the composition of the storage atmosphere. No significant changes in either ACC or conjugated ACC were observed until after flesh bleeding, the major symptoms of low temperature disorder expressed in these fruit, had begun to appear. It was concluded that disorders in nectarines stored at low temperatures are not a stress response involving a disruption of ethylene metabolism but may be associated with differential changes in the metabolism of enzymes associated with normal ripening.


1994 ◽  
Vol 119 (3) ◽  
pp. 524-528 ◽  
Author(s):  
Rafael Alique ◽  
José P. Zamorano ◽  
Ma Luisa Calvo ◽  
Carmen Merodio ◽  
José L. De la Plaza

`Fino de Jete' cherimoya fruit were stored at 20, 10, 8, or 6C, 80% relative humidity. Two rises of CO2 production and an ethylene rise following the first peak of respiration were obtained in fruit held at 20C. The ripe stage coincided with the onset of the second respiratory rise. Soluble sugar and organic acid concentration were maximal, and flesh firmness was 18 N in ripe fruit. Lower temperature reduced respiration rate and ethylene production; however, some stimulation of ethylene synthesis was observed at 10C. Cherimoyas ripened to edible condition during 6 days at 10C, but fruit maintained at 8C for up to 12 days required transfer to 20C to ripen properly. Our results suggest that high increases in CO2 are not sufficient to complete cherimoya fruit ripening without the concurrent rise in ethylene production. Citric acid accumulation, inhibition of ethylene synthesis, and reduced accumulation of sucrose were observed during storage at 6C. Removal to 20C after 12 days at 6C resulted in no ripening, almost complete inhibition of ethylene synthesis, and severe skin browning. Thus, 8C is the lowest tolerable temperature for prolonged cold storage of cherimoya `Fino de Jete'. Fruit can be held at 8C for up to 12 days without damage from chilling injury.


1982 ◽  
Vol 51 (2) ◽  
pp. 231-236 ◽  
Author(s):  
Joung Kil RHEE ◽  
Masatoshi IWATA

2020 ◽  
Vol 50 (5) ◽  
Author(s):  
Rafaely das Chagas Lameira ◽  
Bárbara Marçon Pereira da Silva ◽  
Silvia Regina de Toledo Valentini ◽  
Patrícia Cia ◽  
Ilana Urbano Bron

ABSTRACT: Despite the fact that cold storage and modified atmosphere techniques have already been studied for fresh cut Star fruit, little has been done considering the whole fruit. Besides that, each cultivar has its peculiarities, so the efficiency of combined postharvest treatments should be studied. The objective of this study was to evaluate the effect of polyvinyl chloride (PVC), 8.5 µm thick and low-density polyethylene (LDPE), 33 µm thick associated with cold storage (10 ± 1 °C and 5 ± 1 °C / 85 ± 5% RH) on the conservation of ‘Malasia’ Star fruit. Storage at 25 oC maintained Star fruit overall quality, regardless of the film type, up to four days. The weight loss was higher in fruit packed with PVC, but this fact was not noticed by the sensory analysis. The storage in 5 and 10 oC did not caused chilling injury but fruit presented retention of yellow color development and firmness reduction; these aspects were positively assessed by the sensory analysis. The film type did not influence the conservation of the fruit. The storage at 5 and 10 °C, regardless of the package film, prolonged ‘Malasia’ star fruit shelf life up to 16 days, followed by two days at 25 °C.


2020 ◽  
Vol 8 (2) ◽  
pp. 185 ◽  
Author(s):  
Charlène Leneveu-Jenvrin ◽  
Baptiste Quentin ◽  
Sophie Assemat ◽  
Mathilde Hoarau ◽  
Jean-Christophe Meile ◽  
...  

Minimally-processed pineapple stored under refrigerated conditions is highly perishable. We aimed to characterize the evolution of physicochemical, sensory and microbiological quality during cold storage. Pineapple batches were sampled from several locations in Reunion Island and then minimally processed. In the processing step, the variability of firmness and counts of yeasts and molds were observed. Moreover, correlations between the sampling season and pH and b* color component, as well as between fungal population and b* parameter were observed. During storage, the visual aspect of pineapple cuts changed to brown and shiny, whereas olfactive descriptors shifted from fruity descriptors and fresh to fermented, alcoholic and milky. The values for pH, TA and TSS did not significantly vary according to storage time. A decrease in firmness and C* color parameter was observed. Yeast and mold counts were significantly higher after 7 days of storage. The diversity in yeasts and molds was mainly dependent on the considered batches observed from PCR-DGGE profiles. Fungal species were isolated from spoiled pineapple cuts. The implication of Penicilllium citrtrinum, Talaromyces amestolkiae, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, and Meyerozyma caribbica in the spoilage of minimally-processed pineapple cuts was further demonstrated.


2020 ◽  
Vol 12 (18) ◽  
pp. 7547 ◽  
Author(s):  
Rabia Kanwal ◽  
Hadeed Ashraf ◽  
Muhammad Sultan ◽  
Irrum Babu ◽  
Zarina Yasmin ◽  
...  

Okra possesses a short shelf-life which limits its marketability, thereby, the present study investigates the individual and combined effect of 1-methylcyclopropene (1-MCP) and modified atmosphere packaging (MAP) on the postharvest storage life of okra. The treated/ untreated okra samples were stored at ambient (i.e., 27 °C) and low (i.e., 7 °C) temperatures for eight and 20 days, respectively. Results revealed that the 1-MCP and/or MAP treatment successfully inhibited fruit softening, reduction in mucilage viscosity, and color degradation (hue angle, ∆E, and BI) in the product resulting in a longer period of shelf-life. However, MAP with or without 1-MCP was more effective to reduce weight loss in okra stored at both ambient and cold storage conditions. Additionally, ascorbic acid and total antioxidants were also retained in 1-MCP with MAP during cold storage. The 1-MCP in combination with MAP effectively suppressed respiration rate and ethylene production for four days and eight days at 27 °C and 7 °C temperature conditions, respectively. According to the results, relatively less chilling injury stress also resulted when 1-MCP combined with MAP. The combined treatment of okra pods with 1-MCP and MAP maintained the visual quality of the product in terms of overall acceptability for four days at 20 °C and 20 days at 7 °C.


2016 ◽  
Vol 29 (3) ◽  
pp. 629-641 ◽  
Author(s):  
JOÃO ALISON ALVES OLIVEIRA ◽  
LUIZ CARLOS CHAMHUM SALOMÃO ◽  
DALMO LOPES DE SIQUEIRA ◽  
PAULO ROBERTO CECON

ABSTRACT The objective of this work was to evaluate the tolerance of fruits of different banana cultivars to low temperature storages. Fruits of the cultivars Nanicão (AAA), Prata (AAB), Vitória (AAAB), Maçã (AAB) and Caipira (AAA) were used. Clusters of three fruits were kept in cold storage for 7, 14 and 21 days, with average temperature of 10.53±0.37°C and relative humidity of 85%. Subsequently, the clusters were transferred to temperatures of 22±0.39°C and evaluated for 16 days. The fruits of all cultivars remained green after 21 days of storage at 10.53±0.37°C. Fruits of the cultivar Nanicão did not completely ripened after transferred to the 22°C storage, when stored for 7 days at low temperature. These fruits were firmer, with green peel and low soluble solids and titratable acidity. The fruits of all cultivars complete the ripening when transferred to room temperature after 21 days of cold storage. Chilling injuries increased with cold storage time in all cultivars. The cultivars Nanicão, Caipira and Maçã had more symptoms of chilling injury, while Prata and Vitória were more tolerant to the cold storage (10.53°C) for up to 21 days, showing normal ripening after transferred to the 22±0.39°C storage.


Sign in / Sign up

Export Citation Format

Share Document