scholarly journals Design and Development of Electronic Sensor and Monitoring System of Smart Low-cost Phototherapy Light System for Non-Invasive Monitoring and Treatment of Neonatal Jaundice

2020 ◽  
Vol 5 (5) ◽  
pp. 1233-1246
Author(s):  
Paul Cabacungan ◽  
Carlos Oppus ◽  
Gregory Tangonan ◽  
Nerissa Cabacungan ◽  
John Paul Mamaradlo ◽  
...  
Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yunjeong Yang ◽  
Ji Eun Kim ◽  
Hak Jin Song ◽  
Eun Bin Lee ◽  
Yong-Keun Choi ◽  
...  

Abstract Background Water content variation during plant growth is one of the most important monitoring parameters in plant studies. Conventional parameters (such as dry weight) are unreliable; thus, the development of rapid, accurate methods that will allow the monitoring of water content variation in live plants is necessary. In this study, we aimed to develop a non-invasive, radiofrequency-based monitoring system to rapidly and accurately detect water content variation in live plants. The changes in standing wave ratio (SWR) caused by the presence of stem water and magnetic particles in the stem water flow were used as the basis of plant monitoring systems. Results The SWR of a coil probe was used to develop a non-invasive monitoring system to detect water content variation in live plants. When water was added to the live experimental plants with or without illumination under drought conditions, noticeable SWR changes at various frequencies were observed. When a fixed frequency (1.611 GHz) was applied to a single experimental plant (Radermachera sinica), a more comprehensive monitoring, such as water content variation within the plant and the effect of illumination on water content, was achieved. Conclusions Our study demonstrated that the SWR of a coil probe could be used as a real-time, non-invasive, non-destructive parameter for detecting water content variation and practical vital activity in live plants. Our non-invasive monitoring method based on SWR may also be applied to various plant studies.


Author(s):  
Shoumen Datta

Proposed SARS-CoV-2 surveillance tool using a mobile app for non-invasive monitoring of humans and animals. <p>Engineering a biomedical device as a low-cost, non-invasive, detection, and diagnostic platform for surveillance of infections in humans, and animals. The system embraces the IoT <i>“digital by design”</i> metaphor by incorporating elements of connectivity, data sharing and (secure) information arbitrage. Using an array of aptamers to bind viral targets may help in detection, diagnostics, and potentially prevention in case of SARS-CoV-2. The ADD tool may become part of a broader platform approach.</p>


2020 ◽  
Author(s):  
Shoumen Datta

Proposed SARS-CoV-2 surveillance tool using a mobile app for non-invasive monitoring of humans and animals. <p>Engineering a biomedical device as a low-cost, non-invasive, detection, and diagnostic platform for surveillance of infections in humans, and animals. The system embraces the IoT <i>“digital by design”</i> metaphor by incorporating elements of connectivity, data sharing and (secure) information arbitrage. Using an array of aptamers to bind viral targets may help in detection, diagnostics, and potentially prevention in case of SARS-CoV-2. The ADD tool may become part of a broader platform approach.</p>


2021 ◽  
Author(s):  
Shoumen Datta

Proposed SARS-CoV-2 surveillance tool using a mobile app for non-invasive monitoring of humans and animals. <p>Engineering a biomedical device as a low-cost, non-invasive, detection, and diagnostic platform for surveillance of infections in humans, and animals. The system embraces the IoT <i>“digital by design”</i> metaphor by incorporating elements of connectivity, data sharing and (secure) information arbitrage. Using an array of aptamers to bind viral targets may help in detection, diagnostics, and potentially prevention in case of SARS-CoV-2. The ADD tool may become part of a broader platform approach.</p>


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2822 ◽  
Author(s):  
Laura García ◽  
Lorena Parra ◽  
Jose Jimenez ◽  
Jaime Lloret

Determining and improving the wellbeing of people is one of the priorities of the OECD countries. Nowadays many sensors allow monitoring different parameters in regard to the wellbeing of people. These sensors can be deployed in smartphones, clothes or accessories like watches. Many studies have been performed on wearable devices that monitor certain aspects of the health of people, especially for specific diseases. In this paper, we propose a non-invasive low-cost and low-energy physical wellbeing monitoring system that provides a wellness score based on the obtained data. We present the architecture of the system and the disposition of the sensors on the sock. The algorithm of the system is presented as well. The wellness threshold evaluation module allows determining if the monitored parameter is within healthy ranges. The message forwarding module allows decreasing the energy consumption of the system by detecting the presence of alerts or changes in the data. Finally, a simulation was performed in order to determine the energy consumption of the system. Results show that our algorithm allows saving 44.9% of the initial energy in 10,000 min for healthy people.


2021 ◽  
Author(s):  
Shoumen Datta

Proposed SARS-CoV-2 surveillance tool using a mobile app for non-invasive monitoring of humans and animals. <p>Engineering a biomedical device as a low-cost, non-invasive, detection, and diagnostic platform for surveillance of infections in humans, and animals. The system embraces the IoT <i>“digital by design”</i> metaphor by incorporating elements of connectivity, data sharing and (secure) information arbitrage. Using an array of aptamers to bind viral targets may help in detection, diagnostics, and potentially prevention in case of SARS-CoV-2. The ADD tool may become part of a broader platform approach.</p>


Sign in / Sign up

Export Citation Format

Share Document