scholarly journals The Mobilities of Carriers Confined in a Single-side Doped Square Quantum Wells Dependence on Temperature

Author(s):  
Tran Thi Hai

A theory is given of the mobility of a two-dimensional electron gas at high temperature in single-side square quantum wells. Within the variational approach, we obtain analytic expressions for the carrier distribution, and autocorrelation functions for various scattering mechanisms. We examine the dependence of the mobilities of carriers on the temperature. Our theory is able to well reproduce the recent experimental data on transport in 1S-doped square QWs, e.g., acoustic-phonon partial mobility dependence on temperature for single-side modulation doped square quantum wells.

2010 ◽  
Vol 20 (3) ◽  
pp. 193
Author(s):  
Doan Nhat Quang ◽  
Nguyen Huyen Tung ◽  
Nguyen Trung Hong ◽  
Tran Thi Hai

We present a theoretical study of the effects from symmetric modulation of the envelop wave function on quantum transport in square quantum wells (QWs). Within the variational approach we obtain analytic expressions for the carrier distribution and their scattering in symmetric two-side doped square QWs. Roughness-induced scattering are found significantly weaker than those in the asymmetric one-side doped counterpart. Thus, we propose symmetric modulation of the wave function as an efficient method for enhancement of the roughness-limited QW mobility. Our theory is able to well reproduce the recent experimental data about low-temperature transport of electrons and holes in two-side doped square QWs, e.g., the mobility dependence on the channel width, which have not been explained so far.


2006 ◽  
Vol 243 (4) ◽  
pp. 878-881 ◽  
Author(s):  
E. A. Zhukov ◽  
D. R. Yakovlev ◽  
M. Bayer ◽  
G. Karczewski ◽  
T. Wojtowicz ◽  
...  

Author(s):  
Е.Р. Бурмистров ◽  
Л.П. Авакянц

A new approach to determining the parameters of a two-dimensional electron gas in InGaN/GaN quantum wells is proposed. It is based on the method of terahertz spectroscopy with time resolution, within the framework of which the terahertz frequencies of two-dimensional plasmon resonances excited in the studied samples of InGaN/AlGaN/GaN heterostructures by femtosecond laser pulses at a wavelength of 797 nm were recorded. Oscillating behavior of the output terahertz radiation power with minima in the frequency range 1−5 THz is shown, which is associated with the excitation of plasmon oscillations in a two-dimensional electron gas localized in an InGaN/GaN quantum well. During the processing of terahertz spectra, the effect of renormalization of the effective mass of two-dimensional electron gas, as well as phase modulation near the frequencies of plasmon resonances with an increase in the temperature of the sample from 90 to 170 K, was found. The proposed method is non-contact and can be used in a wide temperature range.


Sign in / Sign up

Export Citation Format

Share Document