scholarly journals DNA bioelectric field: a futuristic bioelectric marker of cancer, aging and death – A working hypothesis

2021 ◽  
Vol 3 (1) ◽  
pp. 68-79
Author(s):  
Matti Pitkänen ◽  
◽  
Reza Rastmanesh ◽  

Telomeres are associated with the ends of DNA double strands. The lengths of the telomeres are controlled by the telomerase enzyme. The shortening of the telomeres is known to relate to aging. In cancers, telomere lengths are abnormally short. Telomeres could act as buffers shielding the part of DNA coding for the proteins. For cancer cells, germ cells and stem cells the length of the telomeres is not varying. There is an analogy with microtubules, which are highly dynamical and carry a longitudinal electric field, whose strength correlates with the microtubule length. Could sticky ends generate a longitudinal field along DNA double strand with strength determined by the lengths of the sticky ends? In the standard picture the flux of the longitudinal electric field would be proportional to the difference of the negative charges associated with the sticky ends. In TGD framework, DNA strands are accompanied by the dark analog of DNA with codons realized as 3-proton units at magnetic flux tubes parallel to DNA strands and neutralizing the negative charge of ordinary DNA except at the sticky ends. This allows considering the possibility that opposite sticky ends carry opposite charges generating a longitudinal electric field along the magnetic flux tube associated with the system. DNA/Telomere bioelectric field could serve as a novel bioelectric marker to be used for prognostic and diagnostic purposes in researches of cancer, aging, surgery grafts and rejuvenation. We propsed that DNA bioelectric field can be used as a futuristic bioelectric marker of cancer, aging and death.

2004 ◽  
Vol 22 (1) ◽  
pp. 213-236 ◽  
Author(s):  
O. L. Vaisberg ◽  
L. A. Avanov ◽  
T. E. Moore ◽  
V. N. Smirnov

Abstract. We analyze two LLBL crossings made by the Interball-Tail satellite under a southward or variable magnetosheath magnetic field: one crossing on the flank of the magnetosphere, and another one closer to the subsolar point. Three different types of ion velocity distributions within the LLBL are observed: (a) D-shaped distributions, (b) ion velocity distributions consisting of two counter-streaming components of magnetosheath-type, and (c) distributions with three components, one of which has nearly zero parallel velocity and two counter-streaming components. Only the (a) type fits to the single magnetic flux tube formed by reconnection between the magnetospheric and magnetosheath magnetic fields. We argue that two counter-streaming magnetosheath-like ion components observed by Interball within the LLBL cannot be explained by the reflection of the ions from the magnetic mirror deeper within the magnetosphere. Types (b) and (c) ion velocity distributions would form within spiral magnetic flux tubes consisting of a mixture of alternating segments originating from the magnetosheath and from magnetospheric plasma. The shapes of ion velocity distributions and their evolution with decreasing number density in the LLBL indicate that a significant part of the LLBL is located on magnetic field lines of long spiral flux tube islands at the magnetopause, as has been proposed and found to occur in magnetopause simulations. We consider these observations as evidence for multiple reconnection Χ-lines between magnetosheath and magnetospheric flux tubes. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; solar wind-magnetosphere interactions)


2010 ◽  
Vol 6 (S273) ◽  
pp. 351-355
Author(s):  
Andrew Gascoyne ◽  
Rekha Jain

AbstractThe magnetohydrodynamic (MHD) sausage tube waves are excited in the magnetic flux tubes by p-mode forcing. These tube waves thus carry energy away from the p-mode cavity which results in the deficit of incident p-mode energy. We calculate the loss of incident p-mode energy as a damping rate of f- and p-modes. We calculate the damping rates of f- and p-modes by a model Sun consisting of an ensemble of many thin magnetic flux tubes with varying plasma properties and distributions. Each magnetic flux tube is modelled as axisymmetric, vertically oriented and untwisted. We find that the magnitude and the form of the damping rates are sensitive to the plasma-β of the tubes and the upper boundary condition used.


2002 ◽  
Vol 9 (2) ◽  
pp. 163-172 ◽  
Author(s):  
N. V. Erkaev ◽  
V. A. Shaidurov ◽  
V. S. Semenov ◽  
H. K. Biernat

Abstract. Variations of the plasma pressure in a magnetic flux tube can produce MHD waves evolving into shocks. In the case of a low plasma beta, plasma pressure pulses in the magnetic flux tube generate MHD slow shocks propagating along the tube. For converging magnetic field lines, such as in a dipole magnetic field, the cross section of the magnetic flux tube decreases enormously with increasing magnetic field strength. In such a case, the propagation of MHD waves along magnetic flux tubes is rather different from that in the case of uniform magnetic fields. In this paper, the propagation of MHD slow shocks is studied numerically using the ideal MHD equations in an approximation suitable for a thin magnetic flux tube with a low plasma beta. The results obtained in the numerical study show that the jumps in the plasma parameters at the MHD slow shock increase greatly while the shock is propagating in the narrowing magnetic flux tube. The results are applied to the case of the interaction between Jupiter and its satellite Io, the latter being considered as a source of plasma pressure pulses.


1988 ◽  
Vol 98 ◽  
pp. 168-168
Author(s):  
T. Roudier ◽  
R. Muller ◽  
J.C. Hulot ◽  
F. Vaissière

AbstractThe modification of properties of granules around magnetic flux tubes has been studied for the first time from photographs (at λ = 4803Å and 5770Å) taken with the 50-cm refractor at Pic du Midi. Statistically, these granules are more numerous, smaller, and more elongated than other granules. During their first two minutes of life they show very pronounced radial orientation to the magnetic flux tube.Angular measurements on the same granules have a precision of ± 10°, which is sufficient as theoretical studies show that they rotate by 360° in the course of their life. Initial results appeared to show that only explosive granules had intrinsic rotation, but further examination showed that it is a general trend. It seems that the granules do rotate significantly, but that there is a more important “push-pull” effect, in agreement with A. Title’s theory drawn from SOUP images.


2001 ◽  
Vol 203 ◽  
pp. 225-228
Author(s):  
W. P. Abbett ◽  
G. H. Fisher ◽  
Y. Fan

Over the past decade, “thin flux tube” models have proven successful in explaining many properties of active regions in terms of magnetic flux tube dynamics in the solar interior. On the other hand, recent 2-D MHD simulations of the emergence of magnetic flux have shown that many of the assumptions adopted in the thin flux tube approximation are invalid. For example, unless the flux tubes exhibit a large degree of initial field line twist — and observations of emerging active regions suggest they do not — they will fragment (break apart) before they are able to emerge through the surface. We attempt to resolve this paradox using a number of 3-D MHD simulations (in the anelastic approximation) that describe the rise and fragmentation of twisted magnetic flux tubes. We find that the degree of fragmentation of an evolving Ω-loop depends strongly on the 3-D geometry of the loop, and that the Coriolis force plays a dynamically important role in the evolution and emergence of magnetic flux.


1990 ◽  
Vol 142 ◽  
pp. 159-174
Author(s):  
B Roberts

The basic aspects of wave propagation in a magnetic flux tube are reviewed, with particular emphasis on the types of flux tube that occur in the solar atmosphere. Two fundamental speeds arise naturally in a description of wave propagation in a flux tube: the slow magnetoacoustic (cusp) speed cT, which is both subsonic and sub-Alfvénic, and a mean Alfvén speed ck. Both surface and body modes are supported by a tube. It is stressed that a flux tube may act as a wave guide, similar to the guidance of light by a fibre optic, or sound in an ocean layer, or seismic waves in the Earth's crust.


2006 ◽  
Vol 24 (6) ◽  
pp. 1695-1704 ◽  
Author(s):  
A. A. Petrukovich ◽  
T. l. Zhang ◽  
W. Baumjohann ◽  
R. Nakamura ◽  
A. Runov ◽  
...  

Abstract. Cluster observations in the magnetotail revealed an abundance of strongly inclined current sheets. We determine the magnetic configuration of a particular subset of such phenomena: a series of sheet crossings, having significantly differing inclinations and occurring during quiet conditions. These wave-like variations appear to propagate azimuthally and their magnetic amplitude and magnetic gradient (current density) inside the sheet are proportional to their steepness (degree of inlcination). In spite of significant normal direction changes between neighboring crossings up to 150°, the magnetic field direction inside the neutral sheet remains almost constant. The wavelengths and spatial amplitudes are of the order of 2–5 RE. These observations are interpreted as crossings of a quasi-periodic dynamical structure produced by almost vertical slippage motion of the neighboring magnetic flux tubes in the high-β plasma sheet, rather than large-scale flapping of a stationary structure.


1998 ◽  
Vol 500 (2) ◽  
pp. 966-977 ◽  
Author(s):  
Sergey Bazdenkov ◽  
Tetsuya Sato

Sign in / Sign up

Export Citation Format

Share Document