scholarly journals Nearest Centroid Classifier with Outlier Removal for Classification

2020 ◽  
Vol 5 (1) ◽  
pp. 57
Author(s):  
Aditya Hari Bawono ◽  
Fitra Abdurrahman Bahtiar ◽  
Ahmad Afif Supianto

Classification method is misled by outlier. However, there are few research of classification with outlier removal, especially for Nearest Centroid Classifier Method. The proposed methodology consists of two stages. First, preprocess the data with outlier removal, removes points which are far from the corresponding centroid. Second, classify the outlier removed data. The experiment covers six data sets which have different characteristic. The results indicate that outlier removal as preprocessing method provide better result for improving Nearest Centroid Classifier performance on most data set.

Author(s):  
Brendan Juba ◽  
Hai S. Le

Practitioners of data mining and machine learning have long observed that the imbalance of classes in a data set negatively impacts the quality of classifiers trained on that data. Numerous techniques for coping with such imbalances have been proposed, but nearly all lack any theoretical grounding. By contrast, the standard theoretical analysis of machine learning admits no dependence on the imbalance of classes at all. The basic theorems of statistical learning establish the number of examples needed to estimate the accuracy of a classifier as a function of its complexity (VC-dimension) and the confidence desired; the class imbalance does not enter these formulas anywhere. In this work, we consider the measures of classifier performance in terms of precision and recall, a measure that is widely suggested as more appropriate to the classification of imbalanced data. We observe that whenever the precision is moderately large, the worse of the precision and recall is within a small constant factor of the accuracy weighted by the class imbalance. A corollary of this observation is that a larger number of examples is necessary and sufficient to address class imbalance, a finding we also illustrate empirically.


2020 ◽  
Vol 17 (6) ◽  
pp. 916-925
Author(s):  
Niyati Behera ◽  
Guruvayur Mahalakshmi

Attributes, whether qualitative or non-qualitative are the formal description of any real-world entity and are crucial in modern knowledge representation models like ontology. Though ample evidence for the amount of research done for mining non-qualitative attributes (like part-of relation) extraction from text as well as the Web is available in the wealth of literature, on the other side limited research can be found relating to qualitative attribute (i.e., size, color, taste etc.,) mining. Herein this research article an analytical framework has been proposed to retrieve qualitative attribute values from unstructured domain text. The research objective covers two aspects of information retrieval (1) acquiring quality values from unstructured text and (2) then assigning attribute to them by comparing the Google derived meaning or context of attributes as well as quality value (adjectives). The goal has been accomplished by using a framework which integrates Vector Space Modelling (VSM) with a probabilistic Multinomial Naive Bayes (MNB) classifier. Performance Evaluation has been carried out on two data sets (1) HeiPLAS Development Data set (106 adjective-noun exemplary phrases) and (2) a text data set in Medicinal Plant Domain (MPD). System is found to perform better with probabilistic approach compared to the existing pattern-based framework in the state of art


2016 ◽  
Author(s):  
Julian Zubek ◽  
Dariusz M Plewczynski

We describe a method for assessing data set complexity based on the estimation of the underlining probability distribution and Hellinger distance. Contrary to some popular measures it is not focused on the shape of decision boundary in a classification task but on the amount of available data with respect to attribute structure. Complexity is expressed in terms of graphical plot, which we call complexity curve. We use it to propose a new variant of learning curve plot called generalisation curve. Generalisation curve is a standard learning curve with x-axis rescaled according to the data set complexity curve. It is a classifier performance measure, which shows how well the information present in the data is utilised. We perform theoretical and experimental examination of properties of the introduced complexity measure and show its relation to the variance component of classification error. We compare it with popular data complexity measures on 81 diverse data sets and show that it can contribute to explaining the performance of specific classifiers on these sets. Then we apply our methodology to a panel of benchmarks of standard machine learning algorithms on typical data sets, demonstrating how it can be used in practice to gain insights into data characteristics and classifier behaviour. Moreover, we show that complexity curve is an effective tool for reducing the size of the training set (data pruning), allowing to significantly speed up the learning process without reducing classification accuracy. Associated code is available to download at: https://github.com/zubekj/complexity_curve (open source Python implementation).


2016 ◽  
Author(s):  
Julian Zubek ◽  
Dariusz M Plewczynski

We describe a method for assessing data set complexity based on the estimation of the underlining probability distribution and Hellinger distance. Contrary to some popular measures it is not focused on the shape of decision boundary in a classification task but on the amount of available data with respect to attribute structure. Complexity is expressed in terms of graphical plot, which we call complexity curve. We use it to propose a new variant of learning curve plot called generalisation curve. Generalisation curve is a standard learning curve with x-axis rescaled according to the data set complexity curve. It is a classifier performance measure, which shows how well the information present in the data is utilised. We perform theoretical and experimental examination of properties of the introduced complexity measure and show its relation to the variance component of classification error. We compare it with popular data complexity measures on 81 diverse data sets and show that it can contribute to explaining the performance of specific classifiers on these sets. Then we apply our methodology to a panel of benchmarks of standard machine learning algorithms on typical data sets, demonstrating how it can be used in practice to gain insights into data characteristics and classifier behaviour. Moreover, we show that complexity curve is an effective tool for reducing the size of the training set (data pruning), allowing to significantly speed up the learning process without reducing classification accuracy. Associated code is available to download at: https://github.com/zubekj/complexity_curve (open source Python implementation).


Nativa ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 70 ◽  
Author(s):  
Luís Flávio Pereira ◽  
Ricardo Morato Fiúza Guimarães

Este trabalho teve como objetivo sugerir diretrizes para melhor mapear usos da terra usando o complemento Semi-automatic Classification Plugin (SCP) para QGIS, destacando-se quais os melhores conjuntos de dados, classificadores e estratégias amostrais para treinamento. Foram combinados quatro conjuntos de dados derivados de imagem Sentinel 2A, três classificadores disponíveis no SCP, e duas estratégias amostrais: amostras de treinamento (ROI’s) separadas ou dissolvidas em uma única amostra, obtendo-se 24 tratamentos. Os tratamentos foram avaliados quanto à acurácia (coeficiente Kappa), qualidade visual do mapa final e tempo de processamento. Os resultados mostraram que: (1) o SCP é adequado para mapear usos da terra; (2) quanto maior o conjunto de dados, melhor o desempenho do classificador; e (3) a utilização de ROI’s dissolvidas sempre diminui o tempo de processamento, mas apresenta efeito ambíguo sobre os diferentes classificadores. Para melhores resultados, recomenda-se a aplicação do classificador Maximum Likelihood sobre o maior conjunto de dados disponível, utilizando-se amostras de treinamento coletadas contemplando todas as variações intraclasse, e posteriormente dissolvidas em uma única ROI.Palavras-chave: sensoriamento remoto, amostras de treinamento, QGIS, Sentinel 2A,MAPPING LAND USES/COVERS WITH SEMI-AUTOMATIC CLASSIFICATION PLUGIN: WHICH DATA SET, CLASSIFIER AND SAMPLING DESIGN? ABSTRACT: This paper aimed to suggest guidelines to better map land uses using the Semi-automatic Classification Plugin (SCP) for QGIS, highlighting which the best data sets, classifiers and training sampling designs. Four data sets from a Sentinel 2A image were combined with three classifiers available in the SCP, and two sampling designs: separate or dissolved training samples (ROI's) in a single sample, obtaining 24 treatments. The treatments were evaluated regarding the accuracy (Kappa coefficient), visual quality of the final map and processing time. The results suggest that: (1) the SCP is suitable to map land uses; (2) the larger the data set, the better the classifier performance; and (3) the use of dissolved ROI always decreases processing time, but has an ambiguous effect on the different classifiers. In order to get better results, we recommend to apply the Maximum Likelihood classifier on the largest data set available, using training samples that cover all possible intraclass variations, subsequently dissolved in a single ROI.Keywords: remote sensing, training samples, QGIS, Sentinel 2A. 


2018 ◽  
Vol 154 (2) ◽  
pp. 149-155
Author(s):  
Michael Archer

1. Yearly records of worker Vespula germanica (Fabricius) taken in suction traps at Silwood Park (28 years) and at Rothamsted Research (39 years) are examined. 2. Using the autocorrelation function (ACF), a significant negative 1-year lag followed by a lesser non-significant positive 2-year lag was found in all, or parts of, each data set, indicating an underlying population dynamic of a 2-year cycle with a damped waveform. 3. The minimum number of years before the 2-year cycle with damped waveform was shown varied between 17 and 26, or was not found in some data sets. 4. Ecological factors delaying or preventing the occurrence of the 2-year cycle are considered.


2018 ◽  
Vol 21 (2) ◽  
pp. 117-124 ◽  
Author(s):  
Bakhtyar Sepehri ◽  
Nematollah Omidikia ◽  
Mohsen Kompany-Zareh ◽  
Raouf Ghavami

Aims & Scope: In this research, 8 variable selection approaches were used to investigate the effect of variable selection on the predictive power and stability of CoMFA models. Materials & Methods: Three data sets including 36 EPAC antagonists, 79 CD38 inhibitors and 57 ATAD2 bromodomain inhibitors were modelled by CoMFA. First of all, for all three data sets, CoMFA models with all CoMFA descriptors were created then by applying each variable selection method a new CoMFA model was developed so for each data set, 9 CoMFA models were built. Obtained results show noisy and uninformative variables affect CoMFA results. Based on created models, applying 5 variable selection approaches including FFD, SRD-FFD, IVE-PLS, SRD-UVEPLS and SPA-jackknife increases the predictive power and stability of CoMFA models significantly. Result & Conclusion: Among them, SPA-jackknife removes most of the variables while FFD retains most of them. FFD and IVE-PLS are time consuming process while SRD-FFD and SRD-UVE-PLS run need to few seconds. Also applying FFD, SRD-FFD, IVE-PLS, SRD-UVE-PLS protect CoMFA countor maps information for both fields.


Author(s):  
Kyungkoo Jun

Background & Objective: This paper proposes a Fourier transform inspired method to classify human activities from time series sensor data. Methods: Our method begins by decomposing 1D input signal into 2D patterns, which is motivated by the Fourier conversion. The decomposition is helped by Long Short-Term Memory (LSTM) which captures the temporal dependency from the signal and then produces encoded sequences. The sequences, once arranged into the 2D array, can represent the fingerprints of the signals. The benefit of such transformation is that we can exploit the recent advances of the deep learning models for the image classification such as Convolutional Neural Network (CNN). Results: The proposed model, as a result, is the combination of LSTM and CNN. We evaluate the model over two data sets. For the first data set, which is more standardized than the other, our model outperforms previous works or at least equal. In the case of the second data set, we devise the schemes to generate training and testing data by changing the parameters of the window size, the sliding size, and the labeling scheme. Conclusion: The evaluation results show that the accuracy is over 95% for some cases. We also analyze the effect of the parameters on the performance.


2019 ◽  
Vol 73 (8) ◽  
pp. 893-901
Author(s):  
Sinead J. Barton ◽  
Bryan M. Hennelly

Cosmic ray artifacts may be present in all photo-electric readout systems. In spectroscopy, they present as random unidirectional sharp spikes that distort spectra and may have an affect on post-processing, possibly affecting the results of multivariate statistical classification. A number of methods have previously been proposed to remove cosmic ray artifacts from spectra but the goal of removing the artifacts while making no other change to the underlying spectrum is challenging. One of the most successful and commonly applied methods for the removal of comic ray artifacts involves the capture of two sequential spectra that are compared in order to identify spikes. The disadvantage of this approach is that at least two recordings are necessary, which may be problematic for dynamically changing spectra, and which can reduce the signal-to-noise (S/N) ratio when compared with a single recording of equivalent duration due to the inclusion of two instances of read noise. In this paper, a cosmic ray artefact removal algorithm is proposed that works in a similar way to the double acquisition method but requires only a single capture, so long as a data set of similar spectra is available. The method employs normalized covariance in order to identify a similar spectrum in the data set, from which a direct comparison reveals the presence of cosmic ray artifacts, which are then replaced with the corresponding values from the matching spectrum. The advantage of the proposed method over the double acquisition method is investigated in the context of the S/N ratio and is applied to various data sets of Raman spectra recorded from biological cells.


2013 ◽  
Vol 756-759 ◽  
pp. 3652-3658
Author(s):  
You Li Lu ◽  
Jun Luo

Under the study of Kernel Methods, this paper put forward two improved algorithm which called R-SVM & I-SVDD in order to cope with the imbalanced data sets in closed systems. R-SVM used K-means algorithm clustering space samples while I-SVDD improved the performance of original SVDD by imbalanced sample training. Experiment of two sets of system call data set shows that these two algorithms are more effectively and R-SVM has a lower complexity.


Sign in / Sign up

Export Citation Format

Share Document