Interactional Effect of Propulsive Propeller Location on Counter-Rotating Coaxial Main Rotor

2018 ◽  
Vol 55 (6) ◽  
pp. 2538-2545 ◽  
Author(s):  
Wei-Liang Lyu ◽  
Guo-Hua Xu
Aerospace ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 54
Author(s):  
Julia A. Cole ◽  
Lauren Rajauski ◽  
Andrew Loughran ◽  
Alexander Karpowicz ◽  
Stefanie Salinger

There is currently interest in the design of small electric vertical take-off and landing aircraft to alleviate ground traffic and congestion in major urban areas. To support progress in this area, a conceptual design method for single-main-rotor and lift-augmented compound electric helicopters has been developed. The design method was used to investigate the feasible design space for electric helicopters based on varying mission profiles and technology assumptions. Within the feasible design space, it was found that a crossover boundary exists as a function of cruise distance and hover time where the most efficient configuration changes from a single-main-rotor helicopter to a lift-augmented compound helicopter. In general, for longer cruise distances and shorter hover times, the lift-augmented compound helicopter is the more efficient configuration. An additional study was conducted to investigate the potential benefits of decoupling the main rotor from the tail rotor. This study showed that decoupling the main rotor and tail rotor has the potential to reduce the total mission energy required in all cases, allowing for increases in mission distances and hover times on the order of 5% for a given battery size.


2014 ◽  
Vol 59 (4) ◽  
pp. 1-11
Author(s):  
Lloyd H. Scarborough III ◽  
Christopher D. Rahn ◽  
Edward C. Smith ◽  
Kevin L. Koudela

Replacing stiff pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch-link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies.


1982 ◽  
Vol 196 (1) ◽  
pp. 11-22 ◽  
Author(s):  
G White

A simple split-torque gear train is used as the main rotor transmission of a single-engine helicopter. Overall speed reduction ratio achieved is 103:1 between the engine at a nominal 36 000 rev/min and the main rotor at 350 rev/min. This ratio is generated from three stages of fixed-axis gear trains containing only eight gears. Alternative configurations are outlined and discussed. Comparison with a current production design shows the split torque arrangement offers reductions in weight, height, and drive train losses. A low total of gears and bearings offers the potential for improved reliability.


1982 ◽  
Vol 104 (2) ◽  
pp. 143-149 ◽  
Author(s):  
W. F. Z. Lee ◽  
D. C. Blakeslee ◽  
R. V. White

A new metering concept of a self-correcting and self-checking turbine meter is described in which a sensor rotor downstream from the main rotor senses and responds to changes in the exit angle of the fluid leaving the main rotor. The output from the sensor rotor is then electronically combined with the output from the main rotor to produce an adjusted output which automatically and continuously corrects to original meter calibration accuracy. This takes place despite changes in retarding torques, bearing wear and/or upstream conditions occurring in field operations over those which were experienced during calibration. The ratio of the sensor rotor output to the main rotor output at operating conditions is also automatically and continuously compared with that at calibration conditions. This provides an indication of the amount of accuracy deviation from initial calibration that is being corrected by the sensor rotor. This concept is studied theoretically and experimentally. Both the theory and test results (laboratory and field) confirm the concept’s validity and practicability.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zongyao Yang ◽  
Yong Shan ◽  
Jingzhou Zhang

Purpose This study aims to investigate the effects of exhaust direction on exhaust plume and helicopter infrared radiation in hover and cruise status. Design/methodology/approach Four exhaust modes are concerned, and the external flow field and fuselage temperature field are calculated by numerical simulation. The infrared radiation intensity distributions of the four models in hovering and cruising states are computed by the ray-tracing method. Findings Under the hover status, the exhaust plume is deflected to flow downward after it exhausts from the nozzle exit, upon the impact of the main-rotor downwash. Besides, the exhaust plume shows a “swirling” movement following the main-rotor rotational direction. The forward-flight flow helps prevent the hot exhaust plume from a collision with the helicopter fuselage generally for the cruise status. In general, the oblique-upward exhaust mode provides moderate infrared radiation intensities in all of the viewing directions, either under the hover or the cruise status. Compared with the hover status, the infrared radiation intensity distribution alters somewhat in cruise. Originality/value Illustrating the influences of exhaust direction on plume flow and helicopter infrared radiation and the differences of helicopter infrared radiation under hover and cruise statuses are identified. Finally, an appropriate exhaust mode is proposed to provide a better IR signature distribution.


Sign in / Sign up

Export Citation Format

Share Document