Effect of Ply Orientation on the In-Depth Response of Carbon-Phenolic Ablative

2020 ◽  
Vol 34 (3) ◽  
pp. 650-658
Author(s):  
Tushar R. Phadnis ◽  
P. Raveendranath ◽  
T. Jayachandran
Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 995
Author(s):  
Venkatachalam Gopalan ◽  
Vimalanand Suthenthiraveerappa ◽  
Jefferson Stanley David ◽  
Jeyanthi Subramanian ◽  
A. Raja Annamalai ◽  
...  

The evolution of a sustainable green composite in various loadbearing structural applications tends to reduce pollution, which in turn enhances environmental sustainability. This work is an attempt to promote a sustainable green composite in buckling loadbearing structural applications. In order to use the green composite in various structural applications, the knowledge on its structural stability is a must. As the structural instability leads to the buckling of the composite structure when it is under an axial compressive load, the work on its buckling characteristics is important. In this work, the buckling characteristics of a woven flax/bio epoxy (WFBE) laminated composite plate are investigated experimentally and numerically when subjected to an axial compressive load. In order to accomplish the optimization study on the buckling characteristics of the composite plate among various structural criterions such as number of layers, the width of the plate and the ply orientation, the optimization tool “response surface methodology” (RSM) is used in this work. The validation of the developed finite element model in Analysis System (ANSYS) version 16 is carried out by comparing the critical buckling loads obtained from the experimental test and numerical simulation for three out of twenty samples. A comparison is then made between the numerical results obtained through ANSYS16 and the results generated using the regression equation. It is concluded that the buckling strength of the composite escalates with the number of layers, the change in width and the ply orientation. It is also noted that the weaving model of the fabric powers the buckling behavior of the composite. This work explores the feasibility of the use of the developed green composite in various buckling loadbearing structural applications. Due to the compromised buckling characteristics of the green composite with the synthetic composite, it has the capability of replacing many synthetic composites, which in turn enhances the sustainability of the environment.


2021 ◽  
Vol 11 (7) ◽  
pp. 3023
Author(s):  
Kejun Yang ◽  
Chenhaolei Han ◽  
Jinhua Feng ◽  
Yan Tang ◽  
Zhongye Xie ◽  
...  

The surface and thickness distribution measurement for transparent film is of interest for electronics and packaging materials. Structured illumination microscopy (SIM) is a prospective technique for measuring film due to its high accuracy and efficiency. However, when the distance between adjacent layers becomes close, the peaks of the modulation depth response (MDR) start to overlap and interfere with the peak extraction, which restricts SIM development in the field of film measurement. In this paper, an iterative peak separation algorithm is creatively applied in the SIM-based technique, providing a precise peak identification even as the MDR peaks overlap and bend into one. Compared with the traditional method, the proposed method has a lower detection threshold for thickness. The experiments and theoretical analysis are elaborated to demonstrate the feasibility of the mentioned method.


1961 ◽  
Vol 14 (2) ◽  
pp. 167
Author(s):  
C. F. Tessmer ◽  
H. L. Andrews ◽  
F. L. Jennings

Author(s):  
P. K. Karsh ◽  
Bindi Thakkar ◽  
R. R. Kumar ◽  
Abhijeet Kumar ◽  
Sudip Dey

The delamination is one of the major modes of failure occurring in the laminated composite due to insufficient bonding between the layers. In this paper, the natural frequencies of delaminated S-glass and E-glass epoxy cantilever composite plates are presented by employing the finite element method (FEM) approach. The rotary inertia and transverse shear deformation are considered in the present study. The effect of parameters such as the location of delamination along the length, across the thickness, the percentage of delamination, and ply-orientation angle on first three natural frequencies of the cantilever plates are presented for S-glass and E-glass epoxy composites. The standard eigenvalue problem is solved to obtain the natural frequencies and corresponding mode shapes. First three mode shape of S-Glass and E-Glass epoxy laminated composites are portrayed corresponding to different ply angle of lamina.


Author(s):  
Jiaguangyi Xiao ◽  
Yong Chen ◽  
Qichen Zhu ◽  
Jun Lee ◽  
Tingting Ma

Composite fan blade ply lay-up design, which includes ply drop-off/shuffle design and stacking sequence design, makes fan blade structures different from traditional composite structures. It gives designers more freedom to construct high-quality fan blades. However, contemporary fan blade profiles are quite complex and twisted, and fan blade structures are quite different from regular composite structures such as composite laminates and composite wings. The ply drop-off design of a fan blade, especially for a fully 3D fan blade, is still an arduous task. To meet this challenge, this paper develops a ply lay-up way with the help of a software called Fibersim. The fully 3D fan blade is cut into ply pieces in Fibersim. As a result, an initial ply sequence is created and ply shuffle could revise it. Because of the complexity of ply shuffling, the ply shuffle table developed in this paper mainly refers to the design experience gained from simple plate-like laminate structures and some criterion. Besides, the impact of different ply orientation patterns on the reliability of composite fan blade is studied through static and modal numerical analysis. The results show that this ply lay-up idea is feasible for aero engine composite fan blade. Under the calculated rotating speeds, the ply stacking sequence 4 (i.e.[−45°/0°/+45°/0°] with the outer seven groups are [−45°/0°/−45°/0°]) shows the greatest margin of safety compared with other stacking sequences. Modal analysis shows that plies with different angles could have relatively big different impacts on blades vibration characteristics. The composite fan blade ply design route this paper presents has gain its initial success and the results in this paper might be used as basic references for composite blade initial structural design.


Geoderma ◽  
2011 ◽  
Vol 162 (1-2) ◽  
pp. 151-158 ◽  
Author(s):  
Timothy Saey ◽  
Marc Van Meirvenne ◽  
Philippe De Smedt ◽  
Liesbet Cockx ◽  
Eef Meerschman ◽  
...  

2010 ◽  
Vol 15 (3) ◽  
pp. 185-196
Author(s):  
B. L. Woodbury ◽  
R. A. Eigenberg ◽  
J. A. Nienaber ◽  
M. J. Spiehs
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document