scholarly journals Some results of comparison between the lower thermosphere zonal winds as seen by the ground-based radars and WINDII on UARS

1999 ◽  
Vol 51 (7-8) ◽  
pp. 701-709 ◽  
Author(s):  
Yu. I. Portnyagin ◽  
T. V. Solovjova ◽  
D. Y. Wang
2005 ◽  
Vol 62 (12) ◽  
pp. 4384-4399 ◽  
Author(s):  
Rolando R. Garcia ◽  
Ruth Lieberman ◽  
James M. Russell ◽  
Martin G. Mlynczak

Abstract Observations made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board NASA’s Thermosphere–Ionosphere–Mesosphere Energetics and Dynamics (TIMED) satellite have been processed using Salby’s fast Fourier synoptic mapping (FFSM) algorithm. The mapped data provide a first synoptic look at the mean structure and traveling waves of the mesosphere and lower thermosphere (MLT) since the launch of the TIMED satellite in December 2001. The results show the presence of various wave modes in the MLT, which reach largest amplitude above the mesopause and include Kelvin and Rossby–gravity waves, eastward-propagating diurnal oscillations (“non-sun-synchronous tides”), and a set of quasi-normal modes associated with the so-called 2-day wave. The latter exhibits marked seasonal variability, attaining large amplitudes during the solstices and all but disappearing at the equinoxes. SABER data also show a strong quasi-stationary Rossby wave signal throughout the middle atmosphere of the winter hemisphere; the signal extends into the Tropics and even into the summer hemisphere in the MLT, suggesting ducting by westerly background zonal winds. At certain times of the year, the 5-day Rossby normal mode and the 4-day wave associated with instability of the polar night jet are also prominent in SABER data.


2012 ◽  
Vol 12 (3) ◽  
pp. 1571-1585 ◽  
Author(s):  
K. A. Day ◽  
M. J. Taylor ◽  
N. J. Mitchell

Abstract. Atmospheric temperatures and winds in the mesosphere and lower thermosphere have been measured simultaneously using the Aura satellite and a meteor radar at Bear Lake Observatory (42° N, 111° W), respectively. The data presented in this study is from the interval March 2008 to July 2011. The mean winds observed in the summer-time over Bear Lake Observatory show the meridional winds to be equatorward at meteor heights during April−August and to reach monthly-mean velocities of −12 m s−1. The mean winds are closely related to temperatures in this region of the atmosphere and in the summer the coldest mesospheric temperatures occur about the same time as the strongest equatorward meridional winds. The zonal winds are eastward through most of the year and in the summer strong eastward zonal wind shears of up to ~4.5 m s−1 km−1 are present. However, westward winds are observed at the upper heights in winter and sometimes during the equinoxes. Considerable inter-annual variability is observed in the mean winds and temperatures. Comparisons of the observed winds with URAP and HWM-07 reveal some large differences. Our radar zonal wind observations are generally more eastward than predicted by the URAP model zonal winds. Considering the radar meridional winds, in comparison to HWM-07 our observations reveal equatorward flow at all meteor heights in the summer whereas HWM-07 suggests that only weakly equatorward, or even poleward flows occur at the lower heights. However, the zonal winds observed by the radar and modelled by HWM-07 are generally similar in structure and strength. Signatures of the 16- and 5-day planetary waves are clearly evident in both the radar-wind data and Aura-temperature data. Short-lived wave events can reach large amplitudes of up to ~15 m s−1 and 8 K and 20 m s−1 and 10 K for the 16- and 5-day waves, respectively. A clear seasonal and short-term variability are observed in the 16- and 5-day planetary wave amplitudes. The 16-day wave reaches largest amplitude in winter and is also present in summer, but with smaller amplitudes. The 5-day wave reaches largest amplitude in winter and in late summer. An inter-annual variability in the amplitude of the planetary waves is evident in the four years of observations. Some 41 episodes of large-amplitude wave occurrence are identified. Temperature and wind amplitudes for these episodes, AT and AW, that passed the Student T-test were found to be related by, AT = 0.34 AW and AT = 0.62 AW for the 16- and 5-day wave, respectively.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1253
Author(s):  
Caixia Tian ◽  
Xiong Hu ◽  
Yurong Liu ◽  
Xuan Cheng ◽  
Zhaoai Yan ◽  
...  

Meteor radar data collected over Langfang, China (39.4° N, 116.7° E) were used to estimate the momentum flux of short-period (less than 2 h) gravity waves (GWs) in the mesosphere and lower thermosphere (MLT), using the Hocking (2005) analysis technique. Seasonal variations in GW momentum flux exhibited annual oscillation (AO), semiannual oscillation (SAO), and quasi-4-month oscillation. Quantitative estimations of GW forcing toward the mean zonal flow were provided using the determined GW momentum flux. The mean flow acceleration estimated from the divergence of this flux was compared with the observed acceleration of zonal winds displaying SAO and quasi-4-month oscillations. These comparisons were used to analyze the contribution of zonal momentum fluxes of SAO and quasi-4-month oscillations to zonal winds. The estimated acceleration from high-frequency GWs was in the same direction as the observed acceleration of zonal winds for quasi-4-month oscillation winds, with GWs contributing more than 69%. The estimated acceleration due to Coriolis forces to the zonal wind was studied; the findings were opposite to the estimated acceleration of high-frequency GWs for quasi-4-month oscillation winds. The significance of this study lies in estimating and quantifying the contribution of the GW momentum fluxes to zonal winds with quasi-4-month periods over mid-latitude regions for the first time.


2010 ◽  
Vol 10 (7) ◽  
pp. 3397-3404 ◽  
Author(s):  
N. Mbatha ◽  
V. Sivakumar ◽  
S. B. Malinga ◽  
H. Bencherif ◽  
S. R. Pillay

Abstract. The occurrence of a sudden stratospheric warming (SSW) excites disturbances in the mesosphere-lower thermospheric (MLT) wind and temperature. Here, we have examined the high frequency (HF) radar wind data from the South African National Antarctic Expedition, SANAE (72° S, 3° W), a radar which is part of the Super Dual Auroral Radar Network (SuperDARN). Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on board the Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics (TIMED) satellite temperature data and National Centre for Environmental Prediction (NCEP) temperature and wind data are used to investigate the dynamical effects of the unprecedented September 2002 SSW in the Antarctica stratosphere and MLT. The mean zonal wind (from SANAE HF radar) at the MLT shows reversal approximately 7 days before the reversal at 10 hPa (from NCEP). This indicates that there was a downwards propagation of circulation disturbance. Westerly zonal winds dominate the winter MLT, but during the 2002 winter there are many periods of westward winds observed compared to other years. The normalised power spectrums of both meridional and zonal winds show presence of planetary waves (of ~14-day period) before the occurrence of the SSW. The SABER vertical temperature profiles indicated the cooling of the MLT region before the SSW event.


2021 ◽  
Author(s):  
Yaxian Li ◽  
Gang Chen

<p>We present an analysis of the perturbations and wave characteristics in equatorial electrojet (EEJ) and equatorial zonal winds in the mesosphere and lower thermosphere region during three sudden stratospheric warming (SSW) events, based on the wind observations by two meteor radars in Indonesia and the geomagnetic field observations in India. During three SSWs, the shifting semidiurnal perturbations are consistently observed in the EEJ and accompanied with strong 2-day periodic perturbations simultaneously. The semidiurnal lunar (L2) tidal amplitudes in the EEJ and zonal winds show the prominent enhancements during the episodes of EEJ perturbations. The time-period spectra of the L2 tidal amplitudes in both the EEJ and zonal winds present the obvious quasi-2-day wave (QTDW) amplification with good agreement during these periods. Our results firstly reveal the important contributions of QTDW to EEJ perturbations during SSWs and the semidiurnal lunar tides modulated by QTDW serve as the main forcing agent therein</p>


2006 ◽  
Vol 24 (12) ◽  
pp. 3343-3350 ◽  
Author(s):  
H. Takahashi ◽  
C. M. Wrasse ◽  
D. Pancheva ◽  
M. A. Abdu ◽  
I. S. Batista ◽  
...  

Abstract. Common periodic oscillations have been observed in meteor radar measurements of the MLT winds at Cariri (7.4° S, 36.5° W) and Ascension Island (7.9° S, 14.4° W) and in the minimum ionospheric virtual height, h'F, measured at Fortaleza (3.9° S, 38.4° W) in 2004, all located in the near equatorial region. Wavelet analysis of these time series reveals that there are 3–4-day, 6–8-day and 12–16-day oscillations in the zonal winds and h'F. The 3–4 day oscillation appeared as a form of a wave packet from 7–17 August 2004. From the wave characteristics analyzed this might be a 3.5-day Ultra Fast Kelvin wave. The 6-day oscillation in the mesosphere was prominent during the period of August to November. In the ionosphere, however, it was apparent only in November. Spectral analysis suggests that this might be a 6.5-day wave previously identified. The 3.5-day and 6.5-day waves in the ionosphere could have important roles in the initiation of equatorial spread F (plasma bubble). These waves might modulate the post-sunset E×B uplifting of the base of the F-layer via the induced lower thermosphere zonal wind and/or the E-region conductivity.


2013 ◽  
Vol 13 (18) ◽  
pp. 9515-9523 ◽  
Author(s):  
K. A. Day ◽  
N. J. Mitchell

Abstract. Mean winds in the mesosphere and lower thermosphere (MLT) over Ascension Island (8° S, 14° W) have been measured at heights of approximately 80–100 km by a meteor radar. The results presented in this study are from the interval October 2001 to December 2011. In all years, the monthly-mean meridional winds display a clear annual oscillation. Typically, these winds are found to be southward during April–October, when they reach velocities of up to about −23 m s−1, and northward throughout the rest of the year, when they reach velocities up to about 16 m s−1. The monthly-mean zonal winds are generally westward throughout most of the year and reach velocities of up to about −46 m s−1. However, eastward winds are observed in May–August and again in December at the lower heights observed. These eastward winds reach a maximum at heights of about 86 km with velocities of up to about 36 m s−1, but decay quickly at heights above and below that level. The mesospheric semi-annual oscillation (MSAO) is clearly apparent in the observed monthly-mean zonal winds. The winds in first westward phase of the MSAO are observed to be much stronger than in the second phase. The westward phase of the MSAO is found to maximise at heights of about 84 km with typical first-phase wind velocities reaching about −35 m s−1. These meteor-radar observations have been compared to the HWM-07 empirical model. The observed meridional winds are found to be generally more southward than those of the model during May–August, when at the lower heights observed the model suggests there will be only weakly southward, or even northward, winds. The zonal monthly-mean winds are in generally good agreement, although in the model they are somewhat less westward than those observed. Throughout the observations there were eight occasions in which the first westward phase of the MSAO was observed. Strikingly, in 2002 there was an event in which the westward winds during the first phase of the MSAO were much stronger than normal and reached velocities of about −75 m s−1. This event is explained in terms of a previously proposed mechanism in which the relative phasing of the stratospheric quasi-biennial oscillation (SQBO) and the MSAO allows an unusually large flux of gravity waves of large westward phase speed to reach the mesosphere. It is the dissipation of these gravity waves that then drives the MLT winds to the large westward velocities observed. It is demonstrated that the necessary SQBO–MSAO phase relationship did indeed exist during 2002, but not during the other years observed here. This demonstration provides strong support for the suggestion that extreme zonal-wind events during the MSAO result from the modulation of gravity-wave fluxes.


2000 ◽  
Vol 18 (3) ◽  
pp. 300-315 ◽  
Author(s):  
Y. I. Portnyagin ◽  
T. V. Solovjova

Abstract. An updated empirical climatic zonally averaged prevailing wind model for the upper mesosphere/lower thermosphere (70-110 km), extending from 80°N to 80°S is presented. The model is constructed from the fitting of monthly mean winds from meteor radar and MF radar measurements at more than 40 stations, well distributed over the globe. The height-latitude contour plots of monthly mean zonal and meridional winds for all months of the year, and of annual mean wind, amplitudes and phases of annual and semiannual harmonics of wind variations are analyzed to reveal the main features of the seasonal variation of the global wind structures in the Northern and Southern Hemispheres. Some results of comparison between the ground-based wind models and the space-based models are presented. It is shown that, with the exception of annual mean systematic bias between the zonal winds provided by the ground-based and space-based models, a good agreement between the models is observed. The possible origin of this bias is discussed.Key words: Meteorology and Atmospheric dynamics (general circulation; middle atmosphere dynamics; thermospheric dynamics)


Sign in / Sign up

Export Citation Format

Share Document