Turbulent air flow near repeated ribs with staggered-type applicableto gas turbine blade internal cooling and design

1988 ◽  
Author(s):  
SHOU-SHING HSIEH
2021 ◽  
Vol 8 (3) ◽  
pp. 52-69
Author(s):  
Dr. Farhan Lafta Rashid Rashid ◽  
Dr. Haider Nadhom Azziz Azziz ◽  
Dr. Emad Qasem Hussein Hussein

In this paper, an investigation of using corrugated passages instead of circular crosssection passages was achieved in conditions simulate the case in the gas turbine blade coolingusing ANSYS Fluent version (14.5) with Boundary conditions: inlet coolant air temperature of300 K with different air flow Reynolds numbers (191000, 286000 and 382000). Thesurrounding constant hot air temperatures was (1700 K). The numerical simulations was done bysolving the governing equations (Continuity, Reynolds Averaging Navier-stokes and Energyequation) using (k-ε) model in three dimensions by using the FLUENT version (14.5). Thepresent case was simulated by using corrugated passage of 3 m long, internal diameter of 0.3 m,0.01 m groove height and wall thickness of 0.01 m, was compared with circular cross sectionpipe for the same length, diameter and thickness. The temperature, velocity distributioncontours, cooling air temperature distribution, the inner wall surface temperature, and thermalperformance factor at the two passages centerline are presented in this paper. The coolant airtemperature at the corrugated passage centerline was higher than that for circular one by(12.3%), the temperature distribution for the inner wall surface for the corrugated passage islower than circular one by (4.88 %). The coolant air flow velocity seems to be accelerated anddecelerated through the corrugated passage, so it was shown that the thermal performance factoralong the corrugated passage is larger than 1, this is due to the fact that the corrugated wallscreate turbulent conditions and increasing thermal surface area, and thus increasing heat transfercoefficient than the circular case.


Author(s):  
James Batstone ◽  
David Gillespie ◽  
Eduardo Romero

A novel form of gas turbine blade or vane cooling in which passages repeatedly branch within the wall of the cooled component is introduced in this paper. These so called dendritic cooling geometries offer particular performance improvements compared to traditional cooling holes where the external cross flow is low, and conventional films have a tendency to lift off the surface. In these regions improved internal cooling efficiency is achieved, while the coolant film is ejected at a low momentum ratio resulting in reduced aerodynamic losses between the film and hot gases, and a more effective surface film. By varying the number of branches of the systems at a particular location it is possible to tune the flow and heat transfer to the requirements at that location whilst maintaining the pressure margin. The additional loss introduced using the internal branching structure allows a full film-coverage arrangement of holes at the external blade surface. In this paper the results of transient heat transfer experiments characterising the internal heat transfer coefficient distribution in large scale models of dendritic passages are reported. Experiments were conducted with 1, 2 and 3 internal flow branches at a range of engine representative Reynolds numbers and exit momentum ratios. CFD models are used to help explain the flow field in the cooling passages. Furthermore the sensitivity of the pressure loss to the blowing ratio at the exit of the cooling holes is characterised and found to be inversely proportional to the number of branches in the dendritic system. Surprisingly the highly branched systems generally do not exhibit the highest pressure losses.


2020 ◽  
Vol 13 (3) ◽  
pp. 215-222
Author(s):  
Akram Luaibi Ballaoot ◽  
Naseer Hamza

The gas turbine engines are occupied an important sector in the energy production and aviation industry and this important increase day after day for their features. One of the most important parameters that limit the gas turbine engine power output is the turbine inlet temperature. The higher is the turbine inlet temperature, the higher is the power output or thrust but this increases of risks of blade thermal failure due to metallurgical limits. Thus the need for a good and efficient process of blade cooling can lead to the best compromise between a powerful engine and safe operation. There are two major methods: film or external cooling and internal cooling inside the blade itself. . In the past number of years there has been considerable progress in turbine cooling research and this paper is limited to review a few selected publications to reflect recent development in turbine blade film cooling. The maximum drop in the surface temperature of the gas turbine blade and associated thermal stress – due to incorporating cooling systems- were 735 ˚C, 1217 N/mm2 respectively.


Author(s):  
Domenico Borello ◽  
Paolo Capobianchi ◽  
Marco De Petris ◽  
Franco Rispoli ◽  
Paolo Venturini

The two-phase flow in a geometry representing the final portion of the internal cooling channels of a gas turbine blade is here presented and discussed. In the configuration under scrutiny, the coolant flows inside the duct in radial direction and it leaves the blade through the trailing edge after a 90 deg turning. An unsteady Reynolds Averaged Navier-Stokes (URANS) simulation of the flow inside such channel was carried out. An original non-linear version of the well-established ζ-f elliptic relaxation model was developed and applied here. The new model was implemented in the well-validated T-FlowS code currently developed by the authors’ group at Sapienza Università di Roma. The predictions demonstrated a good accuracy of the non-linear URANS model, clearly improving the results of the baseline linear ζ-f model and of the Launder Sharma k-ε model used as reference. The obtained unsteady flow field was adopted to track a large number of solid particles released from several selected sections at the inlet and representing the powders usually dispersed (sand, volcanic ashes) in the air spilled from the compressor and used as cooling fluid. The well-validated particle-tracking algorithm here adopted for determining the trajectories demonstrated to be very sensitive to the flow unsteadiness. Finally, the fouling of the solid surfaces was estimated by adopting a model based on the coefficient of restitution approach.


Author(s):  
Naris Pattanaprates ◽  
Ekachai Juntasaro ◽  
Varangrat Juntasaro

Abstract The present work is aimed to investigate whether the modification to the bend geometry of a multipass internal cooling passage in a gas turbine blade can enhance heat transfer and reduce pressure drop. The two-pass channel and the four-pass channel are modified at the bend from the U shape to the bulb and bow shape. The first objective of the work is to investigate whether the modified design will still improve heat transfer with reduced pressure drop in a four-pass channel as in the case of a two-pass channel. It is found out that, unlike the two-pass channel, the heat transfer is not improved but the pressure drop is still reduced for the four-pass channel. The second objective is to investigate the rotating effect on heat transfer and pressure drop in the cases of two-pass and four-pass channels for both original and modified designs. It is found out that heat transfer is improved with reduced pressure drop for all cases. However, the modified design results in the less improvement on heat transfer and lower reduced pressure drop as the rotation number increases. It can be concluded from the present work that the modification can solve the problem of pressure drop without causing the degradation of heat transfer for all cases. The two-pass channel with modified bend results in the highest heat transfer and the lowest pressure drop for rotating cases.


2016 ◽  
Vol 25 (4) ◽  
pp. 336-341 ◽  
Author(s):  
Ryszard Szwaba ◽  
Piotr Kaczynski ◽  
Piotr Doerffer ◽  
Janusz Telega

Sign in / Sign up

Export Citation Format

Share Document