Fluid-dynamic computations on a connection machine - Preliminary timings and complex boundary conditions

Author(s):  
ELAINE ORAN ◽  
JAY BORIS ◽  
EUGENE BROWN
Author(s):  
Mark G. Turner ◽  
John A. Reed ◽  
Robert Ryder ◽  
Joseph P. Veres

A Zero-D cycle simulation of the GE90-94B high bypass turbofan engine has been achieved utilizing mini-maps generated from a high-fidelity simulation. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled 3D computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady-state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the 3D component models are integrated into the cycle model via partial performance maps generated from the CFD flow solutions using one-dimensional meanline turbomachinery programs. This paper high-lights the generation of the highpressure compressor, booster, and fan partial performance maps, as well as turbine maps for the high pressure and low pressure turbine. These are actually “mini-maps” in the sense that they are developed only for a narrow operating range of the component. Results are compared between actual cycle data at a take-off condition and the comparable condition utilizing these mini-maps. The mini-maps are also presented with comparison to actual component data where possible.


2019 ◽  
Vol 29 (8) ◽  
pp. 2792-2808 ◽  
Author(s):  
Behnam Rafiei ◽  
Hamed Masoumi ◽  
Mohammad Saeid Aghighi ◽  
Amine Ammar

Purpose The purpose of this paper is to analyze the effects of complex boundary conditions on natural convection of a yield stress fluid in a square enclosure heated from below (uniformly and non-uniformly) and symmetrically cooled from the sides. Design/methodology/approach The governing equations are solved numerically subject to continuous and discontinuous Dirichlet boundary conditions by Galerkin’s weighted residuals scheme of finite element method and using a non-uniform unstructured triangular grid. Findings Results show that the overall heat transfer from the heated wall decreases in the case of non-uniform heating for both Newtonian and yield stress fluids. It is found that the effect of yield stress on heat transfer is almost similar in both uniform and non-uniform heating cases. The yield stress has a stabilizing effect, reducing the convection intensity in both cases. Above a certain value of yield number Y, heat transfer is only due to conduction. It is found that a transition of different modes of stability may occur as Rayleigh number changes; this fact gives rise to a discontinuity in the variation of critical yield number. Originality/value Besides the new numerical method based on the finite element and using a non-uniform unstructured grid for analyzing natural convection of viscoplastic materials with complex boundary conditions, the originality of the present work concerns the treatment of the yield stress fluids under the influence of complex boundary conditions.


1972 ◽  
Vol 94 (2) ◽  
pp. 457-465 ◽  
Author(s):  
V. L. Streeter

A review of methods of handling unsteady flow problems in metal pipes by numerical methods is undertaken. The characteristic method, typifying explicit methods, and the centered implicit method are developed, including the manner various boundary conditions are introduced into the solutions. High velocity flow is briefly reviewed, i.e., flow cases with the velocity of flow of the same order of magnitude as the pulse wave speed. Three complex boundary conditions are examined: turbomachinery, column separation, and the compressed gas accumulator.


2009 ◽  
Vol 21 (5) ◽  
pp. 633-639 ◽  
Author(s):  
Ming-hui Yu ◽  
Yin-ling Deng ◽  
Lian-chao Qin ◽  
Dang-wei Wang ◽  
Ya-ling Chen

Author(s):  
B. E. L. Deckker ◽  
D. H. Male

Unsteady flow through three-branched pipe configurations has been investigated with the object of finding boundary conditions suitable for use in the analysis of high-amplitude waves using the method of characteristics. The schlieren method and the hydraulic analogy were used to obtain qualitative information about the quasi-steady flow patterns. Quantitative information concerning these patterns was obtained by the measurement of stagnation pressure losses and of the static pressure distribution. Several methods of deriving boundary conditions have been reviewed, and it is considered that those obtained directly by experiment are the most convenient to use.


Author(s):  
R. A. Hicks ◽  
M. Whiteman ◽  
C. W. Wilson

One of the major aims of research in gas turbine combustor systems is the minimisation of non-desirable emissions. The primary method of reducing pollutants such as soot and NOx has been to run the combustion primary zone lean. Unfortunately, this causes problems when the combustor is run under idle and relight conditions as the primary zone air fuel ratio (AFR) can exceed the flammability limit. Altering this AFR directly affects the primary zone aerodynamics through changes in the spray profile. One method of determining the influence of changes in AFR upon the primary zone is to use Computational Fluid Dynamic (CFD) models. However, to model the flow through an air-blast fuel injector and accurately predict the resulting primary zone aerodynamics requires hundreds of thousands, if not millions, of cells. Therefore, with current computer capabilities simplifications need to be made. One simplification is to model the primary zone as a 2-D case. This reduces the number of cells to a computationally solvable level. However, by reducing the problem to 2-D the ability to accurately model air-blast fuel injectors is lost as they are intrinsically 3-D devices. Therefore, it is necessary to define boundary conditions for the fuel injector. Currently, due to difficulties in obtaining experimental measurements inside a air-blast fuel injector, these boundary conditions are often derived using semi-empirical methods. This paper presents and compares two such models; the model proposed by Crocker et al. in 1996 and one developed at DERA specifically for modelling air-blast fuel injectors. The work also highlights the importance of the often neglected radial component upon the primary zone aerodynamics.


Author(s):  
V.A. Babeshko ◽  
O.V. Evdokimova ◽  
O.M. Babeshko

There are several approaches aimed at simplifying complex partial differential equations or their systems involved in the formulation of boundary value problems by introducing simpler, but in a larger number of differential equations. Their solutions allow us to describe solutions to complex boundary value problems. However, to implement this approach, it is necessary to construct solutions of simplified boundary value problems for arbitrary boundary conditions in solvability spaces boundary value problem. In some cases, this can be done using the block element method. The block element method, which has a topological basis, reveals both global and local properties of solutions to boundary value problems for partial differential equations. At the same time, it can be used to study and solve more complex boundary value problems by applying relations that describe certain equations of the continuum by means of relatively simple equations, for example, Helmholtz. To do this, we need to construct solutions of the Helmholtz equations that satisfy boundary conditions that contain completely arbitrary values, rather than partial values, set at the boundary of functions. In relation to the Helmholtz equations, this is achieved using the block element method. Examples of constructing solutions to boundary value problems for Helmholtz equation for Dirichlet and Neumann problems and a comparative analysis of solutions are given in this article.


Sign in / Sign up

Export Citation Format

Share Document