scholarly journals Icing effects on aircraft stability and control determined from flight data - Preliminary results

Author(s):  
T. RATVASKY ◽  
R. RANAUDO
1994 ◽  
Vol 98 (975) ◽  
pp. 192-193
Author(s):  
A.W. Bloy

The teaching of aircraft stability and control at university usually progresses to the complexity of six degrees of freedom with a large array of aerodynamic, gravitational and inertial terms. It is therefore essential to ensure that students have a good grasp of fundamental dynamic characteristics such as damping and natural frequency, and any demonstration in which students observe aircraft motion is particularly helpful. At Manchester University this is achieved by a windtunnel demonstration of aircraft dynamic stability and response in pitch to a sinusoidal gust generator.


1964 ◽  
Vol 68 (646) ◽  
pp. 645-652 ◽  
Author(s):  
D. H. Perry ◽  
J. M. Naish

SummarySome of the uses of ground based flight simulation as a research tool to aid the design of new aircraft and their equipment are described. The function of the simulator is to provide a method for investigating humon flying tasks in the laboratory, so that the relationship between the pilot's capabilities and the equipment's characteristics can be systematically studied. The paper is presented in two parts describing recent work on two research simulators at the RAE.Part I deals with the use of simulation for studying aircraft stability and control characteristics. The equipment used at RAE for this work is described, with particular emphasis on methods of presenting to the pilot a simulated view of the outside world, and for reproducing some of the motion cues which he experiences in flight. Experimental evidence of the importance of these simulation cues when making aircraft control assessments is also presented. Several examples of simulation studies into the control of conventional and VTOL aircraft are given, to illustrate the type of research problems in this field which may be tackled and the techniques involved in solving them.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mohamed Mostafa Y. B. Elshabasy ◽  
Yongki Yoon ◽  
Ashraf Omran

The main objective of the current investigation is to provide a simple procedure to select the controller gains for an aircraft with a largely wide complex flight envelope with different source of nonlinearities. The stability and control gains are optimally devised using genetic algorithm. Thus, the gains are tuned based on the information of a single designed mission. This mission is assigned to cover a wide range of the aircraft’s flight envelope. For more validation, the resultant controller gains were tested for many off-designed missions and different operating conditions such as mass and aerodynamic variations. The results show the capability of the proposed procedure to design a semiglobal robust stability and control augmentation system for a highly maneuverable aircraft such as F-16. Unlike the gain scheduling and other control design methodologies, the proposed technique provides a semi-global single set of gains for both aircraft stability and control augmentation systems. This reduces the implementation efforts. The proposed methodology is superior to the classical control method which rigorously requires the linearization of the nonlinear aircraft model of the investigated highly maneuverable aircraft and eliminating the sources of nonlinearities mentioned above.


Sign in / Sign up

Export Citation Format

Share Document