scholarly journals Sound transmission through a cylindrical sandwich shell with honeycomb core

Author(s):  
Yvette Tang ◽  
Jay Robinson ◽  
Richard Silcox
2021 ◽  
Vol 24 (4) ◽  
pp. 49-60
Author(s):  
Borys V. Uspenskyi ◽  
◽  
Kostiantyn V. Avramov ◽  
Ihor I. Derevianko ◽  
◽  
...  

Presented is a model of the dynamic deformation of a three-layer cylindrical shell with a honeycomb core, manufactured by fused deposition modeling (FDM), and skins reinforced with oriented carbon nano-tubes (CNT). A ULTEM 9085 thermoplastic-based honeycomb core is considered. To analyze the stress-strain state of the honeycomb core, a finite element homogenization procedure was used. As a result of this procedure, the dynamic response of the honeycomb core is modeled by a homogeneous orthotropic material, whose mechanical properties correspond to those of the core. The proposed model is based on the high-order theory, extended for the analysis of sandwich structures. The skin displacement projections are expanded along the transverse coordinate up to quadratic terms. The honeycomb core displacement projections are expanded along the transverse coordinate up to cubic terms. To ensure the integrity of the structure, shell displacement continuity conditions at the junction of the layers are used. The investigation of linear vibrations of the shell is carried out using the Rayleigh-Ritz method. For its application, the potential and kinetic energies of the structure are derived. Considered are the natural frequencies and modes of vibrations of a one-side clamped cylindrical sandwich shell. The dependence of the forms and frequencies of vibrations on the honeycomb core thickness and the direction of reinforcement of the shell skins have been investigated. It was found that the eigenforms of a sandwich shell are characterized by a smaller number of waves in the circumferential direction, as well as a much earlier appearance of axisymmetric forms. This means that when analyzing the resonant vibrations of a sandwich shell, it is necessary to take into account axisymmetric shapes. Changing the direction of reinforcement of the skins with CNTs makes it possible to significantly influence the frequencies of the natural vibrations of the shell, which are characterized by a nonzero number of waves in the circumferential direction. It was found that this parameter does not affect the frequencies of the axisymmetric shapes of the shell under consideration.


2021 ◽  
Vol 10 (1) ◽  
pp. 414-430
Author(s):  
Chunwei Zhang ◽  
Qiao Jin ◽  
Yansheng Song ◽  
Jingli Wang ◽  
Li Sun ◽  
...  

Abstract The sandwich structures are three- or multilayered structures such that their mechanical properties are better than each single layer. In the current research, a three-layered cylindrical shell including a functionally graded porous core and two reinforced nanocomposite face sheets resting on the Pasternak foundation is used as model to provide a comprehensive understanding of vibrational behavior of such structures. The core is made of limestone, while the epoxy is utilized as the top and bottom layers’ matrix phase and also it is reinforced by the graphene nanoplatelets (GNPs). The pattern of the GNPs dispersion and the pores distribution play a crucial role at the continuous change of the layers’ properties. The sinusoidal shear deformation shells theory and the Hamilton’s principle are employed to derive the equations of motion for the mentioned cylindrical sandwich shell. Ultimately, the impacts of the model’s geometry, foundation moduli, mode number, and deviatory radius on the vibrational behavior are investigated and discussed. It is revealed that the natural frequency and rotation angle of the sandwich shell are directly related. Moreover, mid-radius to thickness ratio enhancement results in the natural frequency reduction. The results of this study can be helpful for the future investigations in such a broad context. Furthermore, for the pipe factories current study can be effective at their designing procedure.


1974 ◽  
Vol 18 (01) ◽  
pp. 55-61
Author(s):  
Vincent Volpe ◽  
Youl-Nan Chen ◽  
Joseph Kempner

A stability analysis of an infinitely long web-stiffened, circular cylindrical sandwich shell under uniform axial compression is presented. The formulation begins with the establishment of a set of suitable large-deflection shell equations that forms the basis for the subsequent development of the buckling equations. The mathematical model corresponds to two face layers that are considered as thin shells and a thick core that is capable of resisting both transverse shear and circumferential extension. The associated eigenvalue problem is solved. Results show that the lowest buckling load is associated with the axisymmetric mode and is less than one half the buckling load of an equivalent single-layer shell.


1968 ◽  
Vol 4 (5) ◽  
pp. 36-39
Author(s):  
I. M. Pirogov ◽  
F. I. Selitskii

2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Rohan Galgalikar ◽  
Lonny L. Thompson

This study focuses on sound transmission frequency response through honeycomb core sandwich panels with in-plane orientation. Specifically, an optimization technique has been presented to determine the honeycomb unit cell geometric parameters that maximize the sound transmission loss (STL) through a sandwich panel, while maintaining constraints of constant mass and overall dimensions of panel length and height. The vibration characteristics and STL response of a sandwich panel are parameterized in terms of four honeycomb unit cell independent geometric parameters; two side lengths, cell wall thickness, and interior cell wall angle. With constraints of constant mass and overall dimensions, relationships are determined such that the number of independent variables needed to define the honeycomb cell and panel geometry is reduced to three; the integer number of unit cells in the longitudinal direction of the core, number of unit cells in the height direction, and interior cell wall angle. The optimization procedure is implemented by linking a structural acoustic finite-element (FE) model of the panel, with modefrontier, a general purpose optimization software. Optimum designs are obtained in representative frequency ranges within the resonance region of the STL response. Optimized honeycomb geometric solutions show at least 20% increase in STL response compared to standard hexagonal honeycomb core panels. It is found that the STL response is not only affected by the cell wall angle, but strongly depends also on the number of unit cells in the horizontal and vertical direction.


1993 ◽  
Vol 37 (03) ◽  
pp. 253-272
Author(s):  
W. Cho ◽  
N. A. Papadakis

The strength of a circular, cylindrical sandwich shell subjected to hydrostatic pressure is examined. An energy methodology appropriate for static analysis of sandwich shells is presented. Interactions of the inner and outer shell with the core stiffeners interconnecting these shells are investigated. Numerical results are discussed, together with comparisons between the sandwich shell and alternative designs.


1960 ◽  
Vol 27 (2) ◽  
pp. 316-322 ◽  
Author(s):  
R. T. Shield

A procedure is developed for obtaining the design of an elastic, perfectly plastic shell or structure which will support prescribed loads and which is the optimum design for a given criterion. The action of body forces is included in the analysis. Some problems in the minimum volume design of a circular cylindrical sandwich shell are solved to illustrate the method, and it is found that only for relatively short shells does the minimum volume design effect an appreciable saving over the membrane design.


Sign in / Sign up

Export Citation Format

Share Document