Two-dimensional implicit time dependent calculations for incompressible flows on adaptive unstructured meshes

Author(s):  
P. Lin ◽  
L. Martinelli ◽  
T. Baker ◽  
A. Jameson
1998 ◽  
Vol 5 (3) ◽  
pp. 145-151
Author(s):  
A. D. Kirwan, Jr. ◽  
B. L. Lipphardt, Jr.

Abstract. Application of the Brown-Samelson theorem, which shows that particle motion is integrable in a class of vorticity-conserving, two-dimensional incompressible flows, is extended here to a class of explicit time dependent dynamically balanced flows in multilayered systems. Particle motion for nonsteady two-dimensional flows with discontinuities in the vorticity or potential vorticity fields (modon solutions) is shown to be integrable. An example of a two-layer modon solution constrained by observations of a Gulf Stream ring system is discussed.


1998 ◽  
Vol 09 (08) ◽  
pp. 1129-1141 ◽  
Author(s):  
J. Bernsdorf ◽  
Th. Zeiser ◽  
G. Brenner ◽  
F. Durst

Results for time-dependent, viscous, incompressible flows were investigated using the lattice-Boltzmann (BGK) automata. The decay of a synthetic turbulent flow field and the time evolution of an initial vortex were simulated for validation purposes. The focal point was the investigation of the instationary flow around a square obstacle in a two-dimensional channel for a range of Reynolds numbers between 80 and 300 and a blockage ratio of 0.125. The Strouhal number was measured for this case and found to be in the range of data given in the literature.


1971 ◽  
Vol 6 (1) ◽  
pp. 125-136 ◽  
Author(s):  
John C. Stevenson

Several types of two-dimensional solutions for the equations of magnetohydrodynamics are described. For all these solutions the magnetic field contains at least one hyperbolic neutral point. Two new magnetostatic equilibria are introduced for the ideally conducting case. The magnetic field associated with one of these is used to construct an exact time-dependent solution of the MilD equations where the fluid is necessarily at rest. In the case where the field lines are hyperbolae, it is demonstrated that retention of the energy equation (ordinarily decoupled for incompressible flows) implies that the flow beginning at rest, remains at trest


2013 ◽  
Vol 45 (3) ◽  
pp. 1871-1885 ◽  
Author(s):  
C. Bardos ◽  
M. C. Lopes Filho ◽  
Dongjuan Niu ◽  
H. J. Nussenzveig Lopes ◽  
E. S. Titi

1977 ◽  
Vol 48 (1) ◽  
pp. 270-278 ◽  
Author(s):  
Shih‐Pei Hu ◽  
Benjamin M. Rabinovici

Sign in / Sign up

Export Citation Format

Share Document