Micro Aerial Vehicle Design Optimization using Mixed Discrete and Continuous Variables

Author(s):  
David Lundström ◽  
Peter Krus
2020 ◽  
Vol 39 (10-11) ◽  
pp. 1305-1325
Author(s):  
Mike Allenspach ◽  
Karen Bodie ◽  
Maximilian Brunner ◽  
Luca Rinsoz ◽  
Zachary Taylor ◽  
...  

Omnidirectional micro-aerial vehicles (MAVs) are a growing field of research, with demonstrated advantages for aerial interaction and uninhibited observation. While systems with complete pose omnidirectionality and high hover efficiency have been developed independently, a robust system that combines the two has not been demonstrated to date. This paper presents the design and optimal control of a novel omnidirectional vehicle that can exert a wrench in any orientation while maintaining efficient flight configurations. The system design is motivated by the result of a morphology design optimization. A six-degree-of-freedom optimal controller is derived, with an actuator allocation approach that implements task prioritization, and is robust to singularities. Flight experiments demonstrate and verify the system’s capabilities.


2012 ◽  
Vol 33 (1-2) ◽  
pp. 21-39 ◽  
Author(s):  
Lorenz Meier ◽  
Petri Tanskanen ◽  
Lionel Heng ◽  
Gim Hee Lee ◽  
Friedrich Fraundorfer ◽  
...  

Author(s):  
Hyeong-Uk Park ◽  
Joon Chung ◽  
Jae-Woo Lee ◽  
Daniel Neufeld

Manufacturers often develop new products by modifying and extending existing products in order to achieve new market demands while minimizing development time and manufacturing costs. In this research, an efficient derivative design process was developed to efficiently adapt existing aircraft designs according to new requirements. The proposed design process was evaluated using a case study that derives an unmanned aerial vehicle design from a baseline manned 2-seatlight sport aircraft. Multiple unmanned aerial vehicle operational scenarios were analysed to define the requirements of the derivative aircraft. These included patrol, environmental monitoring, and communications relay missions. Each mission has different requirements and therefore each resulting derivative unmanned aerial vehicle design has different geometry, devices, and performance. The derivative design process involved redefining the design requirements and identifying the minimum design variable set that needed to be considered in order to efficiently adapt the baseline design. Uncertainty was considered as well to enhance the reliability of the optimized result when it considered different conditions for each mission. An optimization method based on the possibility based design optimization was proposed to handle uncertainty that arises in the design requirements for the multi-role nature of unmanned aerial vehicles. In this paper, the possibility based design optimization method was implemented with multidisciplinary design optimization technique to derive the derivative unmanned designs based on originally manned aircraft. This approach prevented constraint violation via uncertainty variations in the operating altitude and payload weight for each. The unmanned aerial vehicle derivative designs satisfying the requirements of three different missions were derived from the proposed design process.


Author(s):  
Yangbo Long ◽  
Andreas Gelardos ◽  
David J. Cappelleri

This paper presents an evolution on the configuration of a novel micro aerial vehicle (MAV) design, the Omnicopter MAV. The first generation Omnicopter prototype has an actuation system with eight degrees of freedom (DOFs) consisting of 5 brushless direct current (BLDC) motors and 3 servo motors. It is composed of a carbon fiber rod built airframe, 2 central counter-rotating coaxial propellers for thrust and yaw control, and 3 perimeter-mounted electric ducted fans (EDFs) with servo motors performing thrust vectoring. During the development of the second generation prototype, we simplified and 3D printed the frame to increase stiffness, robustness and manufacturability, and reduced the actuation DOFs from 8 to 7 by removing the top propeller and using just the bottom one for yaw control to improve performance. Flight controller and control allocator designs and test flight results for this new configuration are presented in this paper.


2012 ◽  
Author(s):  
James Joo ◽  
Gregory Reich ◽  
James Elgersma ◽  
Kristopher Aber

Author(s):  
Jinwoo Jeon ◽  
Sungwook Jung ◽  
Eungchang Lee ◽  
Duckyu Choi ◽  
Hyun Myung

2021 ◽  
Vol 11 (5) ◽  
pp. 2347 ◽  
Author(s):  
Jorge Solis ◽  
Christoffer Karlsson ◽  
Simon Johansson ◽  
Kristoffer Richardsson

This research aims to develop an automatic unmanned aerial vehicle (UAV)-based indoor environmental monitoring system for the acquisition of data at a very fine scale to detect rapid changes in environmental features of plants growing in greenhouses. Due to the complexity of the proposed research, in this paper we proposed an off-board distributed control system based on visual input for a micro aerial vehicle (MAV) able to hover, navigate, and fly to a desired target location without considerably affecting the effective flight time. Based on the experimental results, the MAV was able to land on the desired location within a radius of about 10 cm from the center point of the landing pad, with a reduction in the effective flight time of about 28%.


Sign in / Sign up

Export Citation Format

Share Document