Flame Stabilization and Role of von Karman Vortex Shedding Behind Bluff Body Flameholders

Author(s):  
Sachin Khosla ◽  
Timothy Leach ◽  
Clifford Smith
2011 ◽  
Vol 18 (3) ◽  
pp. 361-370 ◽  
Author(s):  
Grzegorz Pankanin

What is the Role of the Stagnation Region in Karman Vortex Shedding?This paper is devoted to the problem of the appearance of a stagnation region during Karman vortex shedding. This particular phenomenon has been addressed by G. Birkhoff in his model of vortices generation. Experimental results obtained by various research methods confirm the existence of a stagnation region. The properties of this stagnation region have been described based on experimental findings involving flow visualisation and hot-wire anemometry. Special attention has been paid to the relationship between the existence of a slit in the bluff body and the size of the stagnation region. The slit takes over the role of the stagnation region as an information channel for generating vortices.


Author(s):  
Akira Nakazawa ◽  
Takuto Yonemichi ◽  
Koji Fukagata

Abstract Vortex shedding in the flow field causes many kinds of problems such as increase of drag and noise. Especially, the von Kármán vortex street behind bluff bodies, e.g. a tire of an airplane and a pantograph of a train, greatly contributes to them. One of the effective methods to suppress the vortices is the use of plasma actuators (PAs). A PA can induce flow by applying a high-voltage and high-frequency AC voltage to its electrodes. In the present study, we use an opposed-type PA (O-PA), which consists of two PAs facing each other. The O-PA can induce a jet in the direction perpendicular to the surface because of a collision of flows induced by the two PAs. In this study, we investigate the control effect of an O-PA on the flow around a square cylinder using an O-PA by means of the PIV measurement. First, we measure the flow induced by an O-PA. It is confirmed that the velocity of the induced flow increases as the applied voltage Vpp increases, and the O-PA induces the jet of about 1.5 m/s under Vpp = 10kV. Next, we measure the flow around a square cylinder with no control. It is confirmed that the von Kármán vortex street occurs behind a square cylinder. Finally, we measure the flow around a square cylinder under the control by the O-PA attached on the rear surface. It is confirmed that the vortex shedding behind a square cylinder is suppressed by the O-PA under Vpp = 10kV.


2012 ◽  
Vol 108 (26) ◽  
Author(s):  
Marie-Jean Thoraval ◽  
Kohsei Takehara ◽  
Takeharu Goji Etoh ◽  
Stéphane Popinet ◽  
Pascal Ray ◽  
...  

1990 ◽  
Vol 2 (4) ◽  
pp. 479-481 ◽  
Author(s):  
F. Ohle ◽  
P. Lehmann ◽  
E. Roesch ◽  
H. Eckelmann ◽  
A. Hübler

Sign in / Sign up

Export Citation Format

Share Document