What is the Role of the Stagnation Region in Karman Vortex Shedding?

2011 ◽  
Vol 18 (3) ◽  
pp. 361-370 ◽  
Author(s):  
Grzegorz Pankanin

What is the Role of the Stagnation Region in Karman Vortex Shedding?This paper is devoted to the problem of the appearance of a stagnation region during Karman vortex shedding. This particular phenomenon has been addressed by G. Birkhoff in his model of vortices generation. Experimental results obtained by various research methods confirm the existence of a stagnation region. The properties of this stagnation region have been described based on experimental findings involving flow visualisation and hot-wire anemometry. Special attention has been paid to the relationship between the existence of a slit in the bluff body and the size of the stagnation region. The slit takes over the role of the stagnation region as an information channel for generating vortices.

2008 ◽  
Vol 2008 (116) ◽  
pp. 182-191 ◽  
Author(s):  
Masaru MATSUMOTO

2015 ◽  
Vol 144 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Junshi Ito ◽  
Hiroshi Niino

Abstract A mesoscale atmospheric numerical model is used to simulate two cases of Kármán vortex shedding in the lee of Jeju Island, South Korea, in the winter of 2013. Observed cloud patterns associated with the Kármán vortex shedding are successfully reproduced. When the winter monsoon flows out from the Eurasian continent, a convective mixed layer develops through the supply of heat and moisture from the relatively warm Yellow Sea and encounters Jeju Island and dynamical conditions favorable for the formation of lee vortices are realized. Vortices that form behind the island induce updrafts to trigger cloud formation at the top of the convective boundary layer. A sensitivity experiment in which surface drag on the island is eliminated demonstrates that the formation mechanism of the atmospheric Kármán vortex shedding is different from that behind a bluff body in classical fluid mechanics.


1974 ◽  
Vol 96 (4) ◽  
pp. 317-322 ◽  
Author(s):  
S. E. Ramberg ◽  
O. M. Griffin

The von Karman vortex streets formed in the wakes of vibrating, flexible cables were studied using a hot-wire anemometer. All the experiments took place in the flow regime where the vibration and vortex-shedding frequencies lock together, or synchronize, to control the wake formation. Detailed measurements were made of the vortex formation flow for Reynolds numbers between 230 and 650. As in the case of vibrating cylinders, the formation-region length is dependent on a shedding parameter St* related to the natural Strouhal number and the vibrational conditions. Furthermore, the near wake configuration is found to be dependent on the local amplitude of vibration suggesting that the vibrating cylinder rseults are directly applicable in that region.


2021 ◽  
pp. 112-117
Author(s):  
Ratan Kumar Das ◽  
Muhammad Taharat Galib

The Kármán Vortex Shedding is one of the special types of vortex that is generated from asymmetric flow separation. For many years engineers tried to suppress the vortex shedding as it brings unnecessary motion to the static members inside the flow field. A converter model is designed and studied to harness the energy associated with this vortex shedding and convert it into usable form rather than suppressing it. It is a bluff body placed on the free stream incurring vortex-induced vibration and giving out a swinging pendulum motion. This motion is utilized to produce electricity. The model is analyzed on the free stream of water and conversion efficiency of 8.9% is achieved. A theoretical formula is derived regarding the force acting on the bluff body during the motion. Various parameters such as aspect ratio, flow velocity, lock-in delay, frequency of oscillation, etc. as well as their relations are studied by simulating the model in ANSYS FLUENT 18.1 for different configurations. From the simulated results it is obvious that as the lift force on the bluff body increases, more power generation is possible. Also, the experimental results paved the way for further study for practical large-scale implementation of the converter.


Author(s):  
Yasuaki Kozato ◽  
Satoshi Kikuchi ◽  
Shigeki Imao

An attempt to control the flow around a circular cylinder by utilizing the receptivity to the external acoustic disturbance was carried out and its mechanism was also studied. The velocity fields around the cylinder vicinity are carefully investigated with an X-type hot-wire probe. When the disturbance of a higher frequency related to the separated shear layer instability is added, the development of turbulence and the spreading of the shear layer are restrained. And, the amplification of the fluctuating velocity component of the Karman vortex shedding is delayed and its degree is reduced. Furthermore, the process of the gradual scale modification of the shear layer instability that appears prior to the transition of the flow is suppressed.


1987 ◽  
Vol 253 (3) ◽  
pp. H690-H698 ◽  
Author(s):  
D. Adler ◽  
Y. Mahler

A model employing an original discrete method is proposed to explain mechanical alternans in the beating heart. This is compared with analysis using the difference-equation method, which has been utilized in some other areas of science and found to better represent the cardiac beat-to-beat behavior. The model shows the critical role of a slope with an exact value of 2 in the functional dependence between stroke volume (SV) and the end-diastolic volume (EDV). The implications of this model with respect to the factors causing sustained mechanical alternans (SMA) in the heart are shown. A criterion for determining whether SMA is caused by variations in EDV is described. However, this possibility is ruled out on the basis of experimental findings. It is further shown that SMA caused primarily by alterations in the contractile state leads to secondary variations in EDV. In this case the model predicts that the mean slope of SV as a function of EDV, as determined by the two alternating beats, has a value of 2 and is independent of the SV-EDV relation. This prediction concerning the relationship between SV and EDV is confirmed by available experimental data. The implications and advantages of the modeling approaches are explored.


Author(s):  
Masaru Matsumoto

Nowadays, the violent wind-induced vibration, including “rain-wind induced vibration” and “dry-galloping”, of stay-cables of cable-stayed bridges has become the most serious issue for bridge design. Up-to-date, the major factors for excitation of inclined cables have been clarified to be, for “rain-wind” induced vibration, the formation of “water-rivulet” on the particular position of upper cable surface, and, for “dry galloping”, the “axial flow” which flows in the near wake along cable-axis, and the effect of drag-force associated with Reynolds number, separately. However, the details of the effect of “axial flow” remain unsolved. Thus, this study aims to clarify the effect of axial flow in near wake on the aero-elastic vibration of inclined cables basing on various experiments. The mean velocity of axial flow was almost 60% of approaching wind velocity. Furthermore, the aerodynamic effect of the “axial flow” on cross-flow vibration of inclined cables is discussed in relation to the mitigation of Karman vortex shedding in near wake. Since the role of axial flow seems to be similar to the splitter plate installed in wake from the point of mitigation of Karman vortex shedding, to clarify the cross-flow response in relation to the mitigation of Karman vortex, the perforated ratio of the splitter plate was variously changed, then the similarity of effect of axial flow and the one of splitter plate was verified comparing their unsteady lift force-characteristics. In summary, it is shown that the axial flow on aerodynamic cross-flow vibration might excite like galloping similarly with the splitter plate by mitigation of Karman vortex.


Sign in / Sign up

Export Citation Format

Share Document