Development of a Vision-Based Guidance Law for Tracking a Moving Target

Author(s):  
Lili Ma ◽  
Chengyu Cao ◽  
Naira Hovakimyan ◽  
Craig Woolsey ◽  
Vladimir Dobrokhodov ◽  
...  
Keyword(s):  
Author(s):  
Jun-Yong Lee ◽  
Hyeong-Guen Kim ◽  
H Jin Kim

This article proposes an impact-time-control guidance law that can keep a non-maneuvering moving target in the seeker’s field of view (FOV). For a moving target, the missile calculates a predicted intercept point (PIP), designates the PIP as a new virtual stationary target, and flies to the PIP at the desired impact time. The main contribution of the article is that the guidance law is designed to always lock onto the moving target by adjusting the guidance gain. The guidance law for the purpose is based on the backstepping control technique and designed to regulate the defined impact time error. In this procedure, the desired look angle, which is a virtual control, is designed not to violate the FOV limit, and the actual look angle of the missile is kept within the FOV by tracking the desired look angle. To validate the performance of the guidance law, numerical simulation is conducted with different impact times. The result shows that the proposed guidance law intercepts the moving target at the desired impact time maintaining the target lock-on condition.


2017 ◽  
Vol 121 (1244) ◽  
pp. 1479-1501 ◽  
Author(s):  
P. Zhao ◽  
W. Chen ◽  
W. Yu

ABSTRACTA composite guidance law is proposed for intercepting moving target while strictly satisfying the constraints on multiple No-Fly Zones (NFZs) distributed arbitrarily. The research has two major steps. In the first step, by considering only one NFZ, a guidance law is developed with three parts: Orientation Adjustment Scheme (OAS), Boundary-Constraint Handling Scheme (BCHS), and Proportional Navigation (PN). OAS determines the major flight direction by predicting the collision point of the missile and target. BCHS controls the missile to approach and then fly along the boundary of the NFZ smoothly so as to bypass the NFZ through a short path. PN is used to intercept the target in the endgame phase. In the second step, we use the multi-step decision process to set up a series of appropriate waypoints in order to avoid multiple NFZs. The superior performance of the proposed guidance law has been demonstrated by trajectory simulations.


Author(s):  
Shaoming He ◽  
Jiang Wang ◽  
Defu Lin

This paper investigates the problem of robust guidance law design for multiple unmanned aerial vehicles to achieve desired formation pattern for standoff tracking of an unknown ground moving target. The proposed guidance law consists of two main parts: relative range regulation and space angle control. For the first mission, a novel control law is proposed to regulate the relative distance between the unmanned aerial vehicle and the ground moving target to zero asymptotically based on adaptive sliding mode control approach. Considering the discontinuous property of the sign function, which is often used in traditional sliding mode control and will result in high-frequency chattering in the control channel, the proposed controller adopts the continuous saturation function for chattering elimination. Besides the continuous property, convergence to the origin asymptotically can be guaranteed theoretically with the proposed controller, which is quite different from traditional boundary layer technique, where only bounded motion around the sliding manifold can be ensured. For asymptotic stability, it is only required that the lumped uncertainty is bounded, but the upper bound may be unknown by virtue of the designed adaptive methodology. For space angle control, a new multiple leader–follower information architecture is introduced and an acceleration command is then derived for each unmanned aerial vehicle to space them about the loiter circle defined by the first controller. Simulation results with different conditions clearly demonstrate the superiority of the proposed formulation.


Sign in / Sign up

Export Citation Format

Share Document