Active Flow Control of a Pitching Turret Flow Field Using Closed-Loop Feedback Control

Author(s):  
Patrick Shea ◽  
Mark Glauser ◽  
Henry Carlson ◽  
Rolf Verberg ◽  
Ryan Schmit
Author(s):  
Sohaib Obeid ◽  
Ratneshwar Jha ◽  
Goodarz Ahmadi

This study investigates closed-loop feedback control system design aimed at reduction of turbulent flow separation over a NACA 0015 airfoil having 30% integral type trailing edge flap and equipped with leading-edge and trailing edge synthetic jet actuators (SJAs). The multiple-input single-output controller employs system identification techniques based on Nonlinear Auto Regressive Moving Average with eXogenous inputs (NARMAX) method to model nonlinear dynamics of the flow. RANS FLUENT simulations for 2-D airfoil are used besides an analytical modeling for the set of synthetic actuators. The resulting closed loop response using NARMAX tracks the desired pressure value and significant improvement in the transient response over the open-loop system at high angles of attack is realized. Improvements in aerodynamic efficiency and maximum lift values through active flow control would lead to better performance characteristics of airplanes.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Ningquan Wang ◽  
Ruxiu Liu ◽  
Norh Asmare ◽  
Chia-Heng Chu ◽  
Ozgun Civelekoglu ◽  
...  

An adaptive microfluidic system changing its operational state in real-time based on cell measurements through an on-chip electrical sensor network.


Author(s):  
Marcel Staats ◽  
Wolfgang Nitsche

We present results of experiments on a periodically unsteady compressor stator flow of the type which would be expected in consequence of pulsed combustion. A Reynolds number of Re = 600000 was used for the investigations. The experiments were conducted on the two-dimensional low-speed compressor testing facility in Berlin. A choking device downstream the trailing edges induced a periodic non-steady outflow condition to each stator vane which simulated the impact of a pressure gaining combuster downstream from the last stator. The Strouhal number of the periodic disturbance was Sr = 0.03 w.r.t. the stator chord length. Due to the periodic non-steady outflow condition, the flow-field suffers from periodic flow separation phenomena, which were managed by means of active flow control. In our case, active control of the corner separation was applied using fluidic actuators based on the principle of fluidic amplification. The flow separation on the centre region of the stator blade was suppressed by means of a fluidic blade actuator leading to an overall time-averaged loss reduction of 11.5%, increasing the static pressure recovery by 6.8% while operating in the non-steady regime. Pressure measurements on the stator blade and the wake as well as PIV data proved the beneficial effect of the active flow control application to the flow field and the improvement of the compressor characteristics. The actuation efficiency was evaluated by two figures of merit introduced in this contribution.


Author(s):  
Matthias Kiesner ◽  
Rudibert King

This paper presents a closed-loop active flow control strategy to reduce the velocity deficit of the wake of a compressor stator blade. The unsteady stator-rotor interaction, caused by the incoming stator wakes, generates fast changes of the rotor blade loading, affecting the stability and the performance of the overall compressor. Negative effects will be seen likewise when unsteady combustion concepts, such as a pulsed detonation, produce upstream disturbances. Furthermore, the periodic unsteady flow leads to additional undesired effects such as noise and blade vibrations. A controlled reliable manipulation of the stator wake is a way to handle these issues. Therefore, investigations on wake manipulation with trailing-edge blowing were carried out on a new low-speed cascade test rig. Detailed information about the wake profile is obtained by five-hole probe measurements in a plane downstream of the cascade for the natural and the actuated flow at a Reynolds number of 6×105. These measurements show a significant reduction of the wake velocity deficit for the investigated actuator geometry with an injection mass flow of less than 1% of the passage mass flow. Based on these results a position in the wake was chosen which is representative for the actuation impact on the velocity deficit. There, a hot-wire-probe measurement serves as the controlled variable. A family of linear dynamic black-box models was identified from experimental data to account for nonlinear and unmodelled effects. Static nonlinearitiy was compensated for by a Hammerstein model to reduce the model uncertainty and get a higher controller performance. To handle off-design conditions, a robust controller working in a range of Reynolds numbers from 5×105 to 7×105 was synthesized. The task of the controller is to rapidly regulate the controlled variable to a reference velocity by changing the blowing amplitude. The synthesized robust controller was successfully tested in closed-loop experiments with good results in reference tracking for pulse series up to 20 Hz. This translates into a much higher frequency when scaled to the dimension of a real machine.


2020 ◽  
pp. 107754632095261
Author(s):  
Kashfull Orra ◽  
Sounak K Choudhury

The study presents model-based mechanism of nonlinear cutting tool vibration in turning process and the strategy of improving cutting process stability by suppressing machine tool vibration. The approach used is based on the closed-loop feedback control system with the help of electro–magneto–rheological damper. A machine tool vibration signal generated by an accelerometer is fed back to the coil of a damper after suitable amplification. The damper, attached under the tool holder, generates counter forces to suppress the vibration after being excited by the signal in terms of current. The study also discusses the use of transfer function approach for the development of a mathematical model and adaptively controlling the process dynamics of the turning process. The purpose of developing such mechanism is to stabilize the machining process with respect to the dynamic uncut chip thickness responsible for the type-II regenerative effect. The state-space model used in this study successfully checked the adequacy of the model through controllability and observability matrices. The eigenvalue and eigenvector have confirmed the stability of the system more accurately. The characteristic of the stability lobe chart is discussed for the present model-based mechanism.


CIRP Annals ◽  
2009 ◽  
Vol 58 (1) ◽  
pp. 287-290 ◽  
Author(s):  
Julian M. Allwood ◽  
Omer Music ◽  
Ankor Raithathna ◽  
Stephen R. Duncan

Sign in / Sign up

Export Citation Format

Share Document