Large Eddy Simulation Based Flame Transition Modeling in a Lean Premixed Swirl Combustor

Author(s):  
Baris A. Sen ◽  
Graham Goldin ◽  
Kevin Song ◽  
Yanhu Guo ◽  
Randal G. McKinney
Author(s):  
Malte Merk ◽  
Camilo Silva ◽  
Wolfgang Polifke ◽  
Renaud Gaudron ◽  
Marco Gatti ◽  
...  

This study assesses and compares two alternative approaches to determine the acoustic scattering matrix of a premixed turbulent swirl combustor: (1) The acoustic scattering matrix coefficients are obtained directly from a compressible large eddy simulation (LES). Specifically, the incoming and outgoing characteristic waves f and g extracted from the LES are used to determine the respective transmission and reflection coefficients via System Identification (SI) techniques. (2) The flame transfer function (FTF) is identified from LES time series data of upstream velocity and heat release rate. The transfer matrix of the reactive combustor is then derived by combining the FTF with the Rankine–Hugoniot (RH) relations across a compact heat source and a transfer matrix of the cold combustor, which is deduced from a linear network model. Linear algebraic transformation of the transfer matrix consequently yields the combustor scattering matrix. In a cross-comparison study that includes comprehensive experimental data, it is shown that both approaches successfully predict the scattering matrix of the reactive turbulent swirl combustor.


2010 ◽  
Vol 136 (1) ◽  
pp. 45-57 ◽  
Author(s):  
Raghavendra Krishnamurthy ◽  
Ronald Calhoun ◽  
Harindra Fernando

2019 ◽  
Vol 37 (4) ◽  
pp. 5233-5243 ◽  
Author(s):  
P. Benard ◽  
G. Lartigue ◽  
V. Moureau ◽  
R. Mercier

Sign in / Sign up

Export Citation Format

Share Document