Study of the Impact of Angle of Attack on Tone Frequency by Thin Airfoil at Moderate Reynolds Number

Author(s):  
Xiaodong Li ◽  
Baohong Bai ◽  
Min Jiang
2015 ◽  
Vol 780 ◽  
pp. 407-438 ◽  
Author(s):  
S. Pröbsting ◽  
F. Scarano ◽  
S. C. Morris

Tonal noise generated by airfoils at low to moderate Reynolds number is relevant for applications in, for example, small-scale wind turbines, fans and unmanned aerial vehicles. Coherent and convected vortical structures scattering at the trailing edge from the pressure or suction sides of the airfoil have been identified to be responsible for such tonal noise generation. Controversy remains on the respective significance of pressure- and suction-side events, along with their interaction for tonal noise generation. The present study surveys the regimes of tonal noise generation for low to moderate chord-based Reynolds number between $\mathit{Re}_{c}=0.3\times 10^{5}$ and $2.3\times 10^{5}$ and effective angle of attack between $0^{\circ }$ and $6.3^{\circ }$ for the NACA 0012 airfoil profile. Extensive acoustic measurements with smooth surface and with transition to turbulence forced by boundary layer tripping are presented. Results show that, at non-zero angle of attack, tonal noise generation is dominated by suction-side events at low Reynolds number and by pressure-side events at high Reynolds number. At smaller angle of attack, interaction between events on the two sides becomes increasingly important. Particle image velocimetry measurements complete the information on the flow field structure in the source region around the trailing edge. The influences of both angle of attack and Reynolds number on tonal noise generation are explained by changes in the mean flow topology, namely the presence and location of reverse flow regions on the two sides. Data gathered from experimental and numerical studies in the literature are reviewed and interpreted in view of the different regimes.


2005 ◽  
Vol 128 (3) ◽  
pp. 559-567 ◽  
Author(s):  
N. Jovičić ◽  
M. Breuer ◽  
J. Jovanović

Turbulence investigations of the flow past an unswept wing at a high angle of attack are reported. Detailed predictions were carried out using large-eddy simulations (LES) with very fine grids in the vicinity of the wall in order to resolve the near-wall structures. Since only a well-resolved LES ensures reliable results and hence allows a detailed analysis of turbulence, the Reynolds number investigated was restricted to Rec=105 based on the chord length c. Admittedly, under real flight conditions Rec is considerably higher (about (35-40)∙106). However, in combination with the inclination angle of attack α=18 deg this Rec value guarantees a practically relevant flow behavior, i.e., the flow exhibits a trailing-edge separation including some interesting flow phenomena such as a thin separation bubble, transition, separation of the turbulent boundary layer, and large-scale vortical structures in the wake. Due to the fine grid resolution applied, the aforementioned flow features are predicted in detail. Thus, reliable results are obtained which form the basis for advanced turbulence analysis. In order to provide a deeper insight into the nature of turbulence, the flow was analyzed using the invariant theory of turbulence by Lumley and Newman (J. Fluid Mech., 82, 161–178, 1977). Therefore, the anisotropy of various portions of the flow was extracted and displayed in the invariant map. This allowed us to examine the state of turbulence in distinct regions and provided an improved illustration of what happens in the turbulent flow. Thus, turbulence itself and the way in which it develops were extensively investigated, leading to an improved understanding of the physical mechanisms involved, not restricted to a standard test case such as channel flow but for a realistic, practically relevant flow problem at a moderate Reynolds number.


2011 ◽  
Vol 690 ◽  
pp. 536-570 ◽  
Author(s):  
Christopher K. W. Tam ◽  
Hongbin Ju

AbstractIt is known experimentally that an aerofoil immersed in a uniform stream at a moderate Reynolds number emits tones. However, there have been major differences in the experimental observations in the past. Some experiments reported the observation of multiple tones, with strong evidence that these tones are most probably generated by a feedback loop. There is also an experiment reporting the observation of a single tone with no tonal jump or other features associated with feedback. In spite of the obvious differences in the experimental observations published in the literature, it is noted that all the dominant tone frequencies measured in all the investigations are in agreement with an empirically derived Paterson formula. The objective of the present study is to perform a direct numerical simulation (DNS) of the flow and acoustic phenomenon to investigate the tone generation mechanism. When comparing with experimental studies, numerical simulations appear to have two important advantages. The first is that there is no background wind tunnel noise in numerical simulation. This avoids the signal-to-noise ratio problem inherent in wind tunnel experiments. In other words, it is possible to study tones emitted by a truly isolated aerofoil computationally. The second advantage is that DNS produces a full set of space–time data, which can be very useful in determining the tone generation processes. The present effort concentrates on the tones emitted by three NACA0012 aerofoils with a slightly rounded trailing edge but with different trailing edge thickness at zero degree angle of attack. At zero degree angle of attack, in the Reynolds number range of$2\ensuremath{\times} 1{0}^{5} $to$5\ensuremath{\times} 1{0}^{5} $, the boundary layer flow is attached nearly all the way to the trailing edge of the aerofoil. Unlike an aerofoil at an angle of attack, there is no separation bubble, no open flow separation. All the flow separation features tend to increase the complexity of the tone generation processes. The present goal is limited to finding the basic tone generation mechanism in the simplest flow configuration. Our DNS results show that, for the flow configuration under study, the aerofoil emits only a single tone. This is true for all three aerofoils over the entire Reynolds number range of the present study. In the literature, it is known that Kelvin–Helmholtz instabilities of free shear layers generally have a much higher spatial growth rate than that of the Tollmien–Schlichting boundary layer instabilities. A near-wake non-parallel flow instability analysis is performed. It is found that the tone frequencies are the same as the most amplified Kelvin–Helmholtz instability at the location where the wake has a minimum half-width. This suggests that near-wake instability is the energy source of aerofoil tones. However, flow instabilities at low subsonic Mach numbers generally do not cause strong tones. An investigation of how near-wake instability generates tones is carried out using the space–time data provided by numerical simulations. Our observations indicate that the dominant tone generation process is the interaction of the oscillatory motion of the near wake, driven by flow instability, with the trailing edge of the aerofoil. Secondary mechanisms involving unsteady near-wake motion and the formation of discrete vortices in regions further downstream are also observed.


Author(s):  
Johannes Ruhland ◽  
Christian Breitsamter

AbstractThis study presents two-dimensional aerodynamic investigations of various high-lift configuration settings concerning the deflection angles of droop nose, spoiler and flap in the context of enhancing the high-lift performance by dynamic flap movement. The investigations highlight the impact of a periodically oscillating trailing edge flap on lift, drag and flow separation of the high-lift configuration by numerical simulations. The computations are conducted with regard to the variation of the parameters reduced frequency and the position of the rotational axis. The numerical flow simulations are conducted on a block-structured grid using Reynolds Averaged Navier Stokes simulations employing the shear stress transport $$k-\omega $$ k - ω turbulence model. The feature Dynamic Mesh Motion implements the motion of the oscillating flap. Regarding low-speed wind tunnel testing for a Reynolds number of $$0.5 \times 10^{6}$$ 0.5 × 10 6 the flap movement around a dropped hinge point, which is located outside the flap, offers benefits with regard to additional lift and delayed flow separation at the flap compared to a flap movement around a hinge point, which is located at 15 % of the flap chord length. Flow separation can be suppressed beyond the maximum static flap deflection angle. By means of an oscillating flap around the dropped hinge point, it is possible to reattach a separated flow at the flap and to keep it attached further on. For a Reynolds number of $$20 \times 10^6$$ 20 × 10 6 , reflecting full scale flight conditions, additional lift is generated for both rotational axis positions.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 216
Author(s):  
Emanuel A. R. Camacho ◽  
Fernando M. S. P. Neves ◽  
André R. R. Silva ◽  
Jorge M. M. Barata

Natural flight has consistently been the wellspring of many creative minds, yet recreating the propulsive systems of natural flyers is quite hard and challenging. Regarding propulsive systems design, biomimetics offers a wide variety of solutions that can be applied at low Reynolds numbers, achieving high performance and maneuverability systems. The main goal of the current work is to computationally investigate the thrust-power intricacies while operating at different Reynolds numbers, reduced frequencies, nondimensional amplitudes, and mean angles of attack of the oscillatory motion of a NACA0012 airfoil. Simulations are performed utilizing a RANS (Reynolds Averaged Navier-Stokes) approach for a Reynolds number between 8.5×103 and 3.4×104, reduced frequencies within 1 and 5, and Strouhal numbers from 0.1 to 0.4. The influence of the mean angle-of-attack is also studied in the range of 0∘ to 10∘. The outcomes show ideal operational conditions for the diverse Reynolds numbers, and results regarding thrust-power correlations and the influence of the mean angle-of-attack on the aerodynamic coefficients and the propulsive efficiency are widely explored.


Sign in / Sign up

Export Citation Format

Share Document