Force Production by Wing Flapping: The Role of Stroke Angle of Attack and Local Reynolds Number

Author(s):  
Alok A. Rege ◽  
Brian Dennis ◽  
Kamesh Subbarao
Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 216
Author(s):  
Emanuel A. R. Camacho ◽  
Fernando M. S. P. Neves ◽  
André R. R. Silva ◽  
Jorge M. M. Barata

Natural flight has consistently been the wellspring of many creative minds, yet recreating the propulsive systems of natural flyers is quite hard and challenging. Regarding propulsive systems design, biomimetics offers a wide variety of solutions that can be applied at low Reynolds numbers, achieving high performance and maneuverability systems. The main goal of the current work is to computationally investigate the thrust-power intricacies while operating at different Reynolds numbers, reduced frequencies, nondimensional amplitudes, and mean angles of attack of the oscillatory motion of a NACA0012 airfoil. Simulations are performed utilizing a RANS (Reynolds Averaged Navier-Stokes) approach for a Reynolds number between 8.5×103 and 3.4×104, reduced frequencies within 1 and 5, and Strouhal numbers from 0.1 to 0.4. The influence of the mean angle-of-attack is also studied in the range of 0∘ to 10∘. The outcomes show ideal operational conditions for the diverse Reynolds numbers, and results regarding thrust-power correlations and the influence of the mean angle-of-attack on the aerodynamic coefficients and the propulsive efficiency are widely explored.


2007 ◽  
Vol 591 ◽  
pp. 255-288 ◽  
Author(s):  
T. K. SENGUPTA ◽  
T. T. LIM ◽  
SHARANAPPA V. SAJJAN ◽  
S. GANESH ◽  
J. SORIA

Accelerated flow past a NACA 0015 aerofoil is investigated experimentally and computationally for Reynolds number Re = 7968 at an angle of attack α = 30°. Experiments are conducted in a specially designed piston-driven water tunnel capable of producing free-stream velocity with different ramp-type accelerations, and the DPIV technique is used to measure the resulting flow field past the aerofoil. Computations are also performed for other published data on flow past an NACA 0015 aerofoil in the range 5200 ≤ Re ≤ 35000, at different angles of attack. One of the motivations is to see if the salient features of the flow captured experimentally can be reproduced numerically. These computations to solve the incompressible Navier–Stokes equation are performed using high-accuracy compact schemes. Load and moment coefficient variations with time are obtained by solving the Poisson equation for the total pressure in the flow field. Results have also been analysed using the proper orthogonal decomposition technique to understand better the evolving vorticity field and its dependence on Reynolds number and angle of attack. An energy-based stability analysis is performed to understand unsteady flow separation.


Author(s):  
Lilas Deville ◽  
Mihai Arghir

Brush seals are a mature technology that has generated extensive experimental and theoretical work. Theoretical models range from simple correlations with experimental results to advanced numerical approaches coupling the bristles deformation with the flow in the brush. The present work follows this latter path. The bristles of the brush are deformed by the pressure applied by the flow, by the interference with the rotor and with the back plate. The bristles are modeled as linear beams but a nonlinear numerical algorithm deals with the interferences. The brush with its deformed bristles is then considered as an anisotropic porous medium for the leakage flow. Taking into account, the variation of the permeability with the local geometric and flow conditions represents the originality of the present work. The permeability following the principal directions of the bristles is estimated from computational fluid dynamics (CFD) calculations. A representative number of bristles are selected for each principal direction and the CFD analysis domain is delimited by periodicity and symmetry boundary conditions. The parameters of the CFD analysis are the local Reynolds number and the local porosity estimated from the distance between the bristles. The variations of the permeability are thus deduced for each principal direction and for Reynolds numbers and porosities characteristic for brush seal. The leakage flow rates predicted by the present approach are compared with experimental results from the literature. The results depict also the variations of the pressures, of the local Reynolds number, of the permeability, and of the porosity through the entire brush seal.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaohua Zou ◽  
Mingsheng Ling ◽  
Wenzheng Zhai

With the development of flight technology, the need for stable aerodynamic and vibration performance of the aircraft in the civil and military fields has gradually increased. In this case, the requirements for aerodynamic and vibration characteristics of the aircraft have also been strengthened. The existing four-rotor aircraft carries limited airborne equipment and payload, while the current eight-rotor aircraft adopts a plane layout. The size of the propeller is generally fixed, including the load capacity. The upper and lower tower layout analyzed in this paper can effectively solve the problems of insufficient four-axis load and unstable aerodynamic and vibration performance of the existing eight-axis aircraft. This paper takes the miniature octorotor as the research object and studies the aerodynamic characteristics of the miniature octorotor at different low Reynolds numbers, different air pressures and thicknesses, and the lift coefficient and lift-to-drag ratio, as well as the vibration under different elastic moduli and air pressure characteristics. The research algorithm adopted in this paper is the numerical method of fluid-solid cohesion and the control equation of flow field analysis. The research results show that, with the increase in the Reynolds number within a certain range, the aerodynamic characteristics of the miniature octorotor gradually become better. When the elastic modulus is 2.5 E, the aircraft’s specific performance is that the lift increases, the critical angle of attack increases, the drag decreases, the lift-to-drag ratio increases significantly, and the angle of attack decreases. However, the transition position of the flow around the airfoil surface is getting closer to the leading edge, and its state is more likely to transition from laminar flow to turbulent flow. When the unidirectional carbon fiber-reinforced thickness is 0.2 mm and the thin arc-shaped airfoil with the convex structure has a uniform thickness of 2.5% and a uniform curvature of 4.5%, the aerodynamic and vibration characteristics of the octorotor aircraft are most beneficial to flight.


2001 ◽  
Vol 439 ◽  
pp. 403-412 ◽  
Author(s):  
RAMA GOVINDARAJAN ◽  
R. NARASIMHA

We first demonstrate that, if the contributions of higher-order mean flow are ignored, the parabolized stability equations (Bertolotti et al. 1992) and the ‘full’ non-parallel equation of Govindarajan & Narasimha (1995, hereafter GN95) are both equivalent to order R−1 in the local Reynolds number R to Gaster's (1974) equation for the stability of spatially developing boundary layers. It is therefore of some concern that a detailed comparison between Gaster (1974) and GN95 reveals a small difference in the computed amplitude ratios. Although this difference is not significant in practical terms in Blasius flow, it is traced here to the approximation, in Gaster's method, of neglecting the change in eigenfunction shape due to flow non-parallelism. This approximation is not justified in the critical and the wall layers, where the neglected term is respectively O(R−2/3) and O(R−1) compared to the largest term. The excellent agreement of GN95 with exact numerical simulations, on the other hand, suggests that the effect of change in eigenfunction is accurately taken into account in that paper.


Sign in / Sign up

Export Citation Format

Share Document