Small-scale coaxial armed unmanned helicopter flight dynamics investigation

Author(s):  
Meiliwen Wu ◽  
Ming Chen ◽  
Fang Wang ◽  
Qiang Wang
Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1849
Author(s):  
Jianbo Liu ◽  
Rongqiang Guan ◽  
Yongming Yao ◽  
Hui Wang ◽  
Linqiang Hu

In this paper, we propose a novel kinematic and inverse dynamic model for the flybar-less (FBL) swashplate mechanism of a small-scale unmanned helicopter. The swashplate mechanism is an essential configuration of helicopter flight control systems. It is a complex, multi-loop chain mechanism that controls the main rotor. In recent years, the demand for compact swashplate designs has increased owing to the development of small-scale helicopters. The swashplate mechanism proposed in this paper is the latest architectures used for hingeless rotors without a Bell-Hiller mixer. Firstly, the kinematic analysis is derived from the parallel manipulators concepts. Then, based on the principle of virtual work, a methodology for deriving a closed-form dynamic equation of the FBL swashplate mechanism is developed. Finally, the correctness and efficiency of the presented analytical model are demonstrated by numerical examples and the influence factors of the loads acted on actuators are discussed.


Author(s):  
Skander Taamallah

We present a helicopter flight dynamics nonlinear model for a flybarless, articulated, pitch–lag–flap (P–L–F) main rotor (MR) with rigid blades, particularly suited for small-scale unmanned aerial vehicles (UAVs). The model incorporates the MR, tail rotor (TR), fuselage, and tails. This model is further applicable for high bandwidth control specifications and is valid for a range of flight conditions, including the vortex-ring-state (VRS) and autorotation. Additionally, the paper reviews all assumptions made in deriving the model, i.e., structural, aerodynamics, and dynamical simplifications. Simulation results show that this nonlinear model is in good agreement with an equivalent flightlab model, for both static (trim) and dynamic conditions.


2014 ◽  
Vol 59 (4) ◽  
pp. 1-18 ◽  
Author(s):  
Ioannis Goulos ◽  
Vassilios Pachidis ◽  
Pericles Pilidis

This paper presents a mathematical model for the simulation of rotor blade flexibility in real-time helicopter flight dynamics applications that also employs sufficient modeling fidelity for prediction of structural blade loads. A matrix/vector-based formulation is developed for the treatment of elastic blade kinematics in the time domain. A novel, second-order-accurate, finite-difference scheme is employed for the approximation of the blade motion derivatives. The proposed method is coupled with a finite-state induced-flow model, a dynamic wake distortion model, and an unsteady blade element aerodynamics model. The integrated approach is deployed to investigate trim controls, stability and control derivatives, nonlinear control response characteristics, and structural blade loads for a hingeless rotor helicopter. It is shown that the developed methodology exhibits modeling accuracy comparable to that of non-real-time comprehensive rotorcraft codes. The proposed method is suitable for real-time flight simulation, with sufficient fidelity for simultaneous prediction of oscillatory blade loads.


2021 ◽  
Vol 16 (4) ◽  
pp. 675-688
Author(s):  
Xinfan Yin ◽  
Xianmin Peng ◽  
Guichuan Zhang ◽  
Binghui Che ◽  
Chang Wang

Due to the limitation of the size and power, micro unmanned aerial vehicle (MUAV) usually has a small load capacity. Aiming at the problems of limited installation space and easy being interfered in flight attitude measurement of the small-scale unmanned helicopter (SUH), a low-cost and lightweight flight control system of the SUH based on ARM Cortex-M4 core microcontroller and Micro-Electro-Mechanical Systems (MEMS) sensors is developed in this paper. On this basis, in order to realize the autonomous flight control of SUH, firstly, the mathematical model of the SUH is given by using the Newton-Euler formulation. Secondly, a cascade flight controller consisting of the attitude controller and the position controller is developed based on linear active disturbance rejection control (LADRC) and proportional-integral-derivative (PID) control. Furthermore, simulations are conducted to validate the performance of the attitude controller and the position controller in MATLAB/SIMULINK simulation environment. Finally, based on the Align T-REX 470L SUH experimental platform, the hovering experiment and the route flight experiment are also carried out to validate the performance of the designed flight control system hardware and the proposed control algorithm. The results show that the flight control system designed in this paper has high reliability and strong anti-interference ability, and the control algorithm can effectively and reliably realize the attitude stabilization control and route control of the SUH, with high control accuracy and small error.


2021 ◽  
Author(s):  
Shanyong Zhao ◽  
Ke Lu ◽  
Shangjing Wu ◽  
Dacheng Su

Sign in / Sign up

Export Citation Format

Share Document