Effect of Radiation on Gas Turbine Combustor Liner Temperature with Conjugate Heat Transfer (CHT) Methodology

Author(s):  
Yucel Saygin ◽  
Sitki UsLu
Author(s):  
Firat Kiyici ◽  
Ahmet Topal ◽  
Ender Hepkaya ◽  
Sinan Inanli

A numerical study, based on experimental work of Inanli et al. [1] is conducted to understand the heat transfer characteristics of film cooled test plates that represent the gas turbine combustor liner cooling system. Film cooling tests are conducted by six different slot geometries and they are scaled-up model of real combustor liner. Three different blowing ratios are applied to six different geometries and surface cooling effectiveness is determined for each test condition by measuring the surface temperature distribution. Effects of geometrical and flow parameters on cooling effectiveness are investigated. In this study, Conjugate Heat Transfer (CHT) simulations are performed with different turbulence models. Effect of the turbulent Prandtl Number is also investigated in terms of heat transfer distribution along the measurement surface. For this purpose, turbulent Prandtl number is calculated with a correlation as a function of local surface temperature gradient and its effect also compared with the constant turbulent Prandtl numbers. Good agreement is obtained with two-layered k–ϵ with modified Turbulent Prandtl number.


Author(s):  
Sourabh Shrivastava ◽  
Prem Andrade ◽  
Vinay Carpenter ◽  
Ravindra Masal ◽  
Pravin Nakod ◽  
...  

Abstract Better life assessment of hot-components of an aero-engine can help improve its reliability and service life, while, reducing associated maintenance cost. Accurate prediction of Thermo-Mechanical Fatigue (TMF) is one of the crucial aspects of life prediction. Therefore, fully resolved simulation methodologies have gained attention as an ingredient for solving TMF problems owing to their potential for providing comprehensive insights into a system having hot components undergoing transient loading during operation. The present work focuses on a multi-physics simulation-based approach for the life-prediction of a representative gas-turbine combustor liner with an objective of providing a complete framework for TMF analysis of an actual aero-engine combustor liner. The presented methodology consists of a coupling between Computational Fluid Dynamics (CFD) and Finite Element Method (FEM). Thermal loads on the representative aero-engine combustor are predicted using Conjugate Heat Transfer (CHT) modeling in the CFD analyses for different operating conditions suitable for a flight cycle. A load cycle is then constructed using these thermal loads and is transferred to the structural analysis to evaluate the stresses in the liner. Results are obtained regarding spatially varying thermal expansion resulting in inelastic strains as governed by temperature and rate dependent material behavior. Stress and plastic strain history information from the structural analysis are processed to predict the life of different regions of the combustor liner. Different simulation methods for conjugate heat-transfer, load-cycle, material property extraction, thermal-stresses, and fatigue are evaluated, and an overall methodology involving accuracy and reasonable computational cost is proposed. The proposed methodology is numerically verified, and the verification results are presented in this work.


2003 ◽  
Vol 125 (4) ◽  
pp. 994-1002 ◽  
Author(s):  
J. C. Bailey ◽  
J. Intile ◽  
T. F. Fric ◽  
A. K. Tolpadi ◽  
N. V. Nirmalan ◽  
...  

Experiments and numerical simulations were conducted to understand the heat transfer characteristics of a stationary gas turbine combustor liner cooled by impingement jets and cross flow between the liner and sleeve. Heat transfer was also aided by trip-strip turbulators on the outside of the liner and in the flowsleeve downstream of the jets. The study was aimed at enhancing heat transfer and prolonging the life of the combustor liner components. The combustor liner and flow sleeve were simulated using a flat-plate rig. The geometry has been scaled from actual combustion geometry except for the curvature. The jet Reynolds number and the mass-velocity ratios between the jet and cross flow in the rig were matched with the corresponding combustor conditions. A steady-state liquid crystal technique was used to measure spatially resolved heat transfer coefficients for the geometric and flow conditions mentioned above. The heat transfer was measured both in the impingement region as well as over the turbulators. A numerical model of the combustor test rig was created that included the impingement holes and the turbulators. Using CFD, the flow distribution within the flow sleeve and the heat transfer coefficients on the liner were both predicted. Calculations were made by varying the turbulence models, numerical schemes, and the geometrical mesh. The results obtained were compared to the experimental data and recommendations have been made with regard to the best modeling approach for such liner-flow sleeve configurations.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3817
Author(s):  
Kanmaniraja Radhakrishnan ◽  
Jun Su Park

Thermal barrier coating (TBC) plays a vital role in the gas turbine combustor liner (CL) to mitigate the internal heat transfer from combustion gas to the CL and enhance the parent material lifetime of the CL. This present study examined the thermal analysis and creep lifetime prediction based on three different TBC thicknesses, 400, 800, and 1200 μm, coated on the inner CL using the coupled computational fluid dynamics/finite element method. The simulation method was divided into three models to minimize the amount of computational work involved. The Eddy Dissipation Model was used in the first model to simulate premixed methane-air combustion, and the wall temperature of the inner CL was obtained. The conjugate heat transfer simulation on the external cooling flows from the rib turbulator, impingement jet, and cross flow, and the wall temperature of the outer CL was obtained in the second model. The thermal analysis was carried out in the third model using three different TBC thicknesses and incorporating the wall data from the first and second model. The effect of increasing TBC thickness shows that the TBC surface temperature was increased. Thereby, the inner CL metal temperature was decreased due to the TBC thickness as well as the material properties of Yttria Stabilized Zirconia, which has low thermal conductivity and a high thermal expansion coefficient. With the increase in TBC thickness, the average temperature difference between the TBC surface and the inner metal surface increased. In contrast, the average temperature difference between the inner and outer metal surfaces remained nearly constant. The von Mises equivalent stress, based on the material property and thermal expansion coefficient, was determined and used to find the creep lifetime of the CL using the Larson–Miller rupture curve for all TBC thickness cases in order to analyze the thermo-structure. Except in the C-channel, the increasing TBC thickness was found to effectively increase the CL lifespan. Furthermore, the case without TBC was compared with the damaged CL with cracks due to thermal stress, which was prevented by increasing TBC thickness shown in this present study.


Author(s):  
Jeremy C. Bailey ◽  
John Intile ◽  
Thomas F. Fric ◽  
Anil K. Tolpadi ◽  
Nirm V. Nirmalan ◽  
...  

Experiments and numerical simulations were conducted to understand the heat transfer characteristics of a stationary gas turbine combustor liner cooled by impingement jets and cross flow between the liner and sleeve. Heat transfer was also aided by trip-strip turbulators on the outside of the liner and in the flowsleeve downstream of the jets. The study was aimed at enhancing heat transfer and prolonging the life of the combustor liner components. The combustor liner and flow sleeve were simulated using a flat plate rig. The geometry has been scaled from actual combustion geometry except for the curvature. The jet Reynolds number and the mass-velocity ratios between the jet and cross flow in the rig were matched with the corresponding combustor conditions. A steady state liquid crystal technique was used to measure spatially resolved heat transfer coefficients for the geometric and flow conditions mentioned above. The heat transfer was measured both in the impingement region as well as over the turbulators. A numerical model of the combustor test rig was created that included the impingement holes and the turbulators. Using CFD, the flow distribution within the flow sleeve and the heat transfer coefficients on the liner were both predicted. Calculations were made by varying the turbulence models, numerical schemes, and the geometrical mesh. The results obtained were compared to the experimental data and recommendations have been made with regard to the best modeling approach for such liner-flow sleeve configurations.


Author(s):  
Altuğ Pişkin ◽  
Ahmet Topal

Gas turbine combustor design process has significant number of design parameters because of contained complex phenomena. One of the most complicated of these is the heat transfer process of combustor liners. Heat transfer studies are performed in preliminary design phase by the help of one-dimensional tools and combustor geometry is shaped to satisfy design requirements. However; in the detail design phase, a fine tuning can be required to optimize it by using 3D CFD analysis. Conjugate heat transfer is a powerful tool to simulate interaction between reacting flow and combustor liners in detail design phase. But it is difficult to use computationally expensive conjugate heat transfer analysis in design iterations for calculating liner metal temperatures because of the high computation times. Its application will be mainly limited to optimized final geometries and steady simulations. On the other hand, when the 3D liner temperatures are required for structural evaluation during the preliminary design phase; coupled analysis of Finite Element Analysis (FEA)/ Computational Fluid Dynamics (CFD) can provide quick alternative solution. Coupled analysis requires lower mesh size and less calculation time comparing to the conjugate analysis. During a coupled analysis, an iterative boundary information exchange is conducted until the desired convergence criterion is reached. In this study, a series of numerical analyses are evaluated and the relevant rig test thermal paint results are presented. Numerical analyses consist of coupled analyses with various boundary condition cases. Some of these cases have the complete set of boundary conditions and they assumed as comparable to the test condition. In the coupling process, FEM use the near wall gas temperature data that comes from CFD solution and CFD uses wall temperature data that comes from the FEM solution. Heat transfer coefficients are not coupled and they are obtained from empirical heat transfer correlations. An atmospheric combustor test rig was used to apply thermal paint and thermocouple measurements were taken from the combustor outer liner. Numerical and experimental values of the liner temperatures are also compared and analyzed.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2096
Author(s):  
Joon Ahn ◽  
Jeong Chul Song ◽  
Joon Sik Lee

Large eddy simulations are performed to analyze the conjugate heat transfer of turbulent flow in a ribbed channel with a heat-conducting solid wall. An immersed boundary method (IBM) is used to determine the effect of heat transfer in the solid region on that in the fluid region in a unitary computational domain. To satisfy the continuity of the heat flux at the solid–fluid interface, effective conductivity is introduced. By applying the IBM, it is possible to fully couple the convection on the fluid side and the conduction inside the solid and use a dynamic subgrid scale model in a Cartesian grid. The blockage ratio (e/H) is set at 0.1, which is typical for gas turbine blades. Through conjugate heat transfer analysis, it is confirmed that the heat transfer peak in front of the rib occurs because of the impinging of the reattached flow and not the influence of the thermal boundary condition. When the rib turbulator acts as a fin, its efficiency and effectiveness are predicted to be 98.9% and 8.32, respectively. When considering conjugate heat transfer, the total heat transfer rate is reduced by 3% compared with that of the isothermal wall. The typical Biot number at the internal cooling passage of a gas turbine is <0.1, and the use of the rib height as the characteristic length better represents the heat transfer of the rib.


Author(s):  
Zhenfeng Wang ◽  
Peigang Yan ◽  
Hongyan Huang ◽  
Wanjin Han

The ANSYS-CFX software is used to simulate NASA-Mark II high pressure air-cooled gas turbine. The work condition is Run 5411 which have transition flow characteristics. The different turbulence models are adopted to solve conjugate heat transfer problem of this three-dimensional turbine blade. Comparing to the experimental results, k-ω-SST-γ-θ turbulence model results are more accurate and can simulate accurately the flow and heat transfer characteristics of turbine with transition flow characteristics. But k-ω-SST-γ-θ turbulence model overestimates the turbulence kinetic energy of blade local region and makes the heat transfer coefficient higher. It causes that local region temperature of suction side is higher. In this paper, the compiled code adopts the B-L algebra model and simulates the same computation model. The results show that the results of B-L model are accurate besides it has 4% temperature error in the suction side transition region. In addition, different turbulence characteristic boundary conditions of turbine inner-cooling passages are given and K-ω-SST-γ-θ turbulence model is adopted in order to obtain the effect of turbulence characteristic boundary conditions for the conjugate heat transfer computation results. The results show that the turbulence characteristic boundary conditions of turbine inner-cooling passages have a great effect on the conjugate heat transfer results of high pressure gas turbine. ANSYS is applied to analysis the thermal stress of Mark II blade which has ten radial cooled passages and the results of Von Mises stress show that the temperature gradient results have a great effect on the results of blade thermal stress.


Author(s):  
Carol E. Bryant ◽  
James L. Rutledge

Abstract Ceramic matrix composites (CMCs) show promise as higher temperature capable alternatives to traditional metallic components in gas turbine engine hot gas paths. However, CMC components will still require both internal and external cooling, such as film cooling. The overall cooling effectiveness is determined not only by the design of coolant flow, but also by the conduction through the materiel itself. CMCs have anisotropic thermal conductivity, giving rise to heat flow that differs somewhat relative to what we have come to expect from experience with traditional metallic components. Conjugate heat transfer computational fluid dynamics (CFD) simulations were performed in order to isolate the effect anisotropic thermal conductivity has on a cooling architecture consisting of both internal and external cooling. Results show the specific locations and unique effects of anisotropic thermal conduction on overall effectiveness. Thermal conductivity anisotropy is shown to have a significant effect on the resulting overall effectiveness. As CMCs begin to make their way into gas turbine engines, care must be taken to ensure that anisotropy is characterized properly and considered in the thermal analysis.


Sign in / Sign up

Export Citation Format

Share Document