Analysis of the coupled orbit and attitude dynamics of space debris in Geostationary Earth Orbit

Author(s):  
Clémence Le Fevre
Author(s):  
Laura Pirovano ◽  
Gennaro Principe ◽  
Roberto Armellin

AbstractWhen building a space catalogue, it is necessary to acquire multiple observations of the same object for the estimated state to be considered meaningful. A first concern is then to establish whether different sets of observations belong to the same object, which is the association problem. Due to illumination constraints and adopted observation strategies, small objects may be detected on short arcs, which contain little information about the curvature of the orbit. Thus, a single detection is usually of little value in determining the orbital state due to the very large associated uncertainty. In this work, we propose a method that both recognizes associated observations and sequentially reduces the solution uncertainty when two or more sets of observations are associated. The six-dimensional (6D) association problem is addressed as a cascade of 2D and 4D optimization problems. The performance of the algorithm is assessed using objects in geostationary Earth orbit, with observations spread over short arcs.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Tao Shi ◽  
Xuebin Zhuang ◽  
Liwei Xie

AbstractThe autonomous navigation of the spacecrafts in High Elliptic Orbit (HEO), Geostationary Earth Orbit (GEO) and Geostationary Transfer Orbit (GTO) based on Global Navigation Satellite System (GNSS) are considered feasible in many studies. With the completion of BeiDou Navigation Satellite System with Global Coverage (BDS-3) in 2020, there are at least 130 satellites providing Position, Navigation, and Timing (PNT) services. In this paper, considering the latest CZ-5(Y3) launch scenario of Shijian-20 GEO spacecraft via Super-Synchronous Transfer Orbit (SSTO) in December 2019, the navigation performance based on the latest BeiDou Navigation Satellite System (BDS), Global Positioning System (GPS), Galileo Navigation Satellite System (Galileo) and GLObal NAvigation Satellite System (GLONASS) satellites in 2020 is evaluated, including the number of visible satellites, carrier to noise ratio, Doppler, and Position Dilution of Precision (PDOP). The simulation results show that the GEO/Inclined Geo-Synchronous Orbit (IGSO) navigation satellites of BDS-3 can effectively increase the number of visible satellites and improve the PDOP in the whole launch process of a typical GEO spacecraft, including SSTO and GEO, especially for the GEO spacecraft on the opposite side of Asia-Pacific region. The navigation performance of high orbit spacecrafts based on multi-GNSSs can be significantly improved by the employment of BDS-3. This provides a feasible solution for autonomous navigation of various high orbit spacecrafts, such as SSTO, MEO, GEO, and even Lunar Transfer Orbit (LTO) for the lunar exploration mission.


1991 ◽  
Vol 126 ◽  
pp. 37-40
Author(s):  
J.A.M. McDonnell ◽  
K. Sullivan ◽  
S.F. Green ◽  
T.J. Stevenson ◽  
D.H. Niblett

AbstractA simple dynamic model to investigate the relative fluxes and particle velocities on a spacecraft’s different faces is presented. The results for LDEF are consistent with a predominantly interplanetary origin for the larger particulates, but a sizable population of orbital particles with sizes capable of penetrating foils of thickness <30μm. Data from experiments over the last 30 years do not show the rise in flux expected if these were space debris. The possibility of a population of natural orbital particulates awaits confirmation from chemical residue analysis.


Author(s):  
Constantin Sandu ◽  
Cristian-Teodor Olariu ◽  
Radu-Constantin Sandu
Keyword(s):  

1985 ◽  
Vol 85 ◽  
pp. 89-96
Author(s):  
H.A. Zook ◽  
G. Lange ◽  
E. Grün ◽  
H. Fechtig

AbstractWe are gaining an increased awareness and understanding of Earth-orbiting space debris. Meteoroid experiments in near-Earth orbit must therefore now be able to differentiate between interplanetary meteoroids and space debris. Space debris impacts are not thought, however, to have significantly affected near-Earth meteoroid measurements carried out in the early 1960’s. New experimental evidence also makes it appear very probable that most impact pits on lunar rocks with pit diameters smaller than 7 micrometers have been generated by lunar secondary ejecta impacts, and not by primary meteoroid impacts. In addition, ages determined from solar flare tracks in lunar rocks are not considered secure. Lunar crater production rates are more reliably deduced from meteoroid space experiments and not from solar flare track ages. When all of the above qualifications are taken into account, however, a rather satisfactorily self-consistent meteoroid flux versus mass distribution is obtained.


1995 ◽  
Vol 13 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Claude Phipps

So-called “space junk” forced a change of plan for a recent Shuttle mission. However, ground-based lasers with atmospheric-turbulence-compensating beam directors represent a singularly effective method of de-orbiting space junk, because they use cheap Earth-based power, and because they lend themselves to rapid retargeting. Plasma physics and lasertarget interaction theory dictate the laser parameters for a particular mission. We will discuss a practical laser system and beam director with 20-kW average power at 0.5-µm wavelength that is capable of clearing most low-Earth-orbit objects with mass less than 100 kg in about 4 years. This is a special application of the Laser Impulse Space Propulsion (LISP) concept, by which objects are propelled in space by the ablation jet produced on their surface by a remote laser.


Sign in / Sign up

Export Citation Format

Share Document