scholarly journals Mixing Enhancement in a Scramjet Combustor Using Fuel Jet Injection Swirl.

Author(s):  
Sonja M. Flesberg ◽  
Ray Taghavi ◽  
Saeed Farokhi
2020 ◽  
Vol 124 (1278) ◽  
pp. 1262-1280
Author(s):  
A. Oamjee ◽  
R. Sadanandan

ABSTRACTNumerical investigation of the effect of pylon geometry within a pylon-cavity aided Supersonic Combustion Ramjet (SCRAMJET) combustor on mixing enhancement, flame-holding capability, fuel jet penetration and total pressure loss are conducted in the current study. RANS equations for compressed real gas are solved by coupled, implicit, second-order upwind solver. A two-equation SST model is used for turbulence modelling. Validation of the computational model is performed with the help of experimental data collected using surface pressure taps, Schlieren flow visualisation and particle image velocimetry (PIV). The study uses four distinct pylon geometry cases, which include the baseline geometry. Sonic injection of hydrogen fuel through a 1mm diameter hole at 2mm downstream of the pylon rear face along the axis of the test section floor is performed for every case. A crossflow of Mach number 2.2 at four bar absolute pressure and standard atmospheric temperature is maintained. A comparative study of mixing efficiency, total pressure loss, fuel jet penetration and fuel plume area fraction for the different cases evaluate the mixing performance. The simulations show that the Pylon 2 case gives a significant improvement in the performance parameters compared to the other geometries. It is observed that mixing efficiency and fuel jet penetration capability of the system are highly dependent on the streamwise vortex within the flameholder.


2013 ◽  
Vol 444-445 ◽  
pp. 1345-1349
Author(s):  
Si Yin Zhou ◽  
Wan Sheng Nie ◽  
Bo He ◽  
Xue Ke Che ◽  
Xue Min Tian

How to enhance the combustion and reduce the total pressure loss in scramjet combustor are very critical for the practical application of hypersonic aircraft. Based on the dominant thermal mechanism of arc plasma, the plasma generated in combustor is regarded as a promising method to improve the combustion. As a result, the combustor model with transverse fuel jet and plasma generated by two discharge modes at the upstream of flameholding cavity is established and it is used to study the mechanism of fuel mixing enhancement through numerical investigation. The results show that an oblique shock wave would be formed at the upstream of the pseudo small plasma hump, and interact with the separation shock wave induced by the transverse jet. This results in the recirculation zone at the upstream of fuel jet being enlarged obviously. Besides that, under the non-reaction flow conditions, the total pressure recovery coefficient increases due to the plasma generated. However, the total pressure recovery coefficient varies apparently and the shear layer above the cavity is fluctuant when the plasma is generated by periodical discharge mode. While under the reaction flow conditions, the shear layer develops thicker and the total pressure recovery coefficient decreases. And due to the existing of plasma, the mole fraction of product water increases. But compared with the steady discharge mode, the level of water is lower and the total pressure recovery coefficient decreases more under the periodical discharge mode. Though the plasma generated by steady discharge mode shows better performance in assisting combustion and reducing the pressure loss, considering the energy saving and the use of different parameters of the periodical discharge, the same effects of enhancing the fuel mixing through enlarging the recirculation zone located at the upstream of fuel jet and promoting the mass exchange of cavity can be reached. More numerical experiments have to be done to optimize the parameters of periodical discharge plasma to receive a best improvement on the performance of scramjet combustor.


2021 ◽  
Vol 46 (24) ◽  
pp. 13340-13352
Author(s):  
Obula Reddy Kummitha ◽  
K.M. Pandey ◽  
Anil Kumar Reddy Padidam

Author(s):  
Кулманаков ◽  
S. Kulmanakov ◽  
Кирюшин ◽  
I. Kiryushin

The article contains a description of the experimental setup and the stent-speed video atomized fuel stream, applicable for the study of the jet sputtering process liquid fuel. In axial section shows information about the dynamics of the area of the normalized luminance zones in the diesel fuel jet injection pressure range of 60 MPa to 180 MPa


2018 ◽  
Vol 2018 (0) ◽  
pp. OS9-3
Author(s):  
Takahiro SEGUCHI ◽  
Kazuaki HATANAKA ◽  
Mitsutomo HIROTA ◽  
Srisha M.V.Rao ◽  
Tsutomu SAITO

Sign in / Sign up

Export Citation Format

Share Document