Modeling Gap Effects on Transition Dominated by Tollmien-Schlichting Instability

2020 ◽  
Author(s):  
Jeffrey D. Crouch ◽  
Vladimir S. Kosorygin ◽  
Mary I. Sutanto
2008 ◽  
Vol 44 (3) ◽  
pp. 205-222 ◽  
Author(s):  
T. Albrecht ◽  
H. Metzkes ◽  
R. Grundmann ◽  
G. Mutschke ◽  
G. Gerbeth

Author(s):  
H. Lüdeke ◽  
R. von Soldenhoff

AbstractTo determine allowable tolerances between successive suction panels at hybrid laminar wings with suction surfaces, direct numerical simulations of Tollmien–Schlichting waves over different steps are carried out for realistic suction rates on a wind tunnel configuration. Simulations at given suction panel positions over forward and backward facing steps are carried out by the use of a high-order method for the direct simulation of Tollmien–Schlichting wave growth. Comparisons between high-fidelity direct numerical simulations and quick linear stability calculations have shown capabilities and limits of the well-validated linear stability theory design approach.


2001 ◽  
Vol 432 ◽  
pp. 69-90 ◽  
Author(s):  
RUDOLPH A. KING ◽  
KENNETH S. BREUER

An experimental investigation was conducted to examine acoustic receptivity and subsequent boundary-layer instability evolution for a Blasius boundary layer formed on a flat plate in the presence of two-dimensional and oblique (three-dimensional) surface waviness. The effect of the non-localized surface roughness geometry and acoustic wave amplitude on the receptivity process was explored. The surface roughness had a well-defined wavenumber spectrum with fundamental wavenumber kw. A planar downstream-travelling acoustic wave was created to temporally excite the flow near the resonance frequency of an unstable eigenmode corresponding to kts = kw. The range of acoustic forcing levels, ε, and roughness heights, Δh, examined resulted in a linear dependence of receptivity coefficients; however, the larger values of the forcing combination εΔh resulted in subsequent nonlinear development of the Tollmien–Schlichting (T–S) wave. This study provides the first experimental evidence of a marked increase in the receptivity coefficient with increasing obliqueness of the surface waviness in excellent agreement with theory. Detuning of the two-dimensional and oblique disturbances was investigated by varying the streamwise wall-roughness wavenumber αw and measuring the T–S response. For the configuration where laminar-to-turbulent breakdown occurred, the breakdown process was found to be dominated by energy at the fundamental and harmonic frequencies, indicative of K-type breakdown.


2002 ◽  
Vol 472 ◽  
pp. 229-261 ◽  
Author(s):  
LUCA BRANDT ◽  
DAN S. HENNINGSON

A transition scenario initiated by streamwise low- and high-speed streaks in a flat-plate boundary layer is studied. In many shear flows, the perturbations that show the highest potential for transient energy amplification consist of streamwise-aligned vortices. Due to the lift-up mechanism these optimal disturbances lead to elongated streamwise streaks downstream, with significant spanwise modulation. In a previous investigation (Andersson et al. 2001), the stability of these streaks in a zero-pressure-gradient boundary layer was studied by means of Floquet theory and numerical simulations. The sinuous instability mode was found to be the most dangerous disturbance. We present here the first simulation of the breakdown to turbulence originating from the sinuous instability of streamwise streaks. The main structures observed during the transition process consist of elongated quasi-streamwise vortices located on the flanks of the low-speed streak. Vortices of alternating sign are overlapping in the streamwise direction in a staggered pattern. The present scenario is compared with transition initiated by Tollmien–Schlichting waves and their secondary instability and by-pass transition initiated by a pair of oblique waves. The relevance of this scenario to transition induced by free-stream turbulence is also discussed.


1989 ◽  
Vol 209 ◽  
pp. 285-308 ◽  
Author(s):  
R. J. Bodonyi ◽  
W. J. C. Welch ◽  
P. W. Duck ◽  
M. Tadjfar

A numerical study of the generation of Tollmien-Schlichting (T–S) waves due to the interaction between a small free-stream disturbance and a small localized variation of the surface geometry has been carried out using both finite–difference and spectral methods. The nonlinear steady flow is of the viscous–inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier–Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of the T–S waves generated by the interaction between the free-stream disturbance and the surface distortion, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T–S waves.


Author(s):  
J. D. Hughes ◽  
G. J. Walker

Data from a surface hot-film array on the outlet stator of a 1.5 stage axial compressor are analyzed to look for direct evidence of natural transition phenomena. An algorithm is developed to identify instability waves within the Tollmien Schlichting (T-S) frequency range. The algorithm is combined with a turbulent intermittency detection routine to produce space∼time diagrams showing the probability of instability wave occurrence prior to regions of turbulent flow. The paper compares these plots for a range of blade loading, with free-stream conditions corresponding to the maximum and minimum inflow disturbance periodicity produced by inlet guide vane clocking. Extensive regions of amplifying instability waves are identified in nearly all cases. The implications for transition prediction in decelerating flow regions on axial turbomachine blades are discussed.


2009 ◽  
Vol 623 ◽  
pp. 167-185
Author(s):  
M. R. TURNER ◽  
P. W. HAMMERTON

The interaction between free-stream disturbances and the boundary layer on a body with a rounded leading edge is considered in this paper. A method which incorporates calculations using the parabolized stability equation in the Orr–Sommerfeld region, along with an upstream boundary condition derived from asymptotic theory in the vicinity of the leading edge, is generalized to bodies with an inviscid slip velocity which tends to a constant far downstream. We present results for the position of the lower branch neutral stability point and the magnitude of the unstable Tollmien–Schlichting (T-S) mode at this point for both a parabolic body and the Rankine body. For the Rankine body, which has an adverse pressure gradient along its surface far from the nose, we find a double maximum in the T-S wave amplitude for sufficiently large Reynolds numbers.


1996 ◽  
Vol 315 ◽  
pp. 31-49 ◽  
Author(s):  
G. R. Grek ◽  
V. V. Kozlov ◽  
S. V. Titarenko

An experimental study of the effect of riblets on three-dimensional nonlinear structures, the so-called Λ-vortices on laminar-turbulent transition showed that riblets delay the transformation of the Λ-vortices into turbulent spots and shift the point of transition downstream. This result is opposite to the negative influence of such ribbed surfaces on two-dimensional linear Tollmien-Schlichting waves (the linear stage of transition). Thus, the ribbed surface influences laminar-turbulent transition structures differently: a negative influence on the linear-stage transition structures and a positive influence on the nonlinear-stage transition structures. It is demonstrated that transition control by means of riblets requires special attention to be paid to the choice of their location, taking into account the stage of transition.


Sign in / Sign up

Export Citation Format

Share Document