Supersonic Combustion Heat Flux in an RDE Model

Author(s):  
Foluso Ladeinde ◽  
HyeJin Oh ◽  
Somnic Jacobs
2020 ◽  
Vol 34 (4) ◽  
pp. 13-21
Author(s):  
Sun-Woo Hwang ◽  
Won-Hee Park ◽  
Chang-Yong Kim

This study tested the wood used in building interiors; each type had various incident heat fluxes based on their thickness. The combustion characteristics measured were effective heat of combustion, heat release rate peak and arrival time, maximum average rate of heat emission, and piloted ignition temperature. The wood specimens used in the experiment were 4.8 to 18 mm thick. 25, 35, 50, and 60 kW/m<sup>2</sup> were applied to the incident heat flux that the wood specimens were exposed to. The wood specimens tested were two types of medium-density fiberboard (each with a different density), treated red pine, particle board, and plywood. A comprehensive comparison of different fire characteristics was conducted to analyze the fire patterns corresponding to each type of wood in this way, the risk of fire was studied. The risk of fire was particularly high for particle board. The results of quantifying the fire characteristics of the types of wood studied could function as important input data with which to calculate the fire load of composite combustibles.


Author(s):  
M. A. Taymarov ◽  
V. K. Ilyin ◽  
E. G. Chiklyaev ◽  
R. G. Sungatullin

The methane-hydrogen fraction is a gaseous hydrocarbon by-product during oil processing for obtaining petroleum products. Until recently, the methane-hydrogen fraction was used as furnace oil in internal technological processes at a refinery. Some of the low-calorie methane-hydrogen fraction was burned in flares. Driven by the prospect of the methane-hydrogen fraction use as a fuel alternative to natural gas for burning in thermal power plants boilers, it became necessary to study the methane-hydrogen fraction combustion processes in large volumes. The conversion of ON-1000/1 and ON-1000/2 furnaces from the combustion of the methane- hydrogen fraction with combustion heat of 25.45 MJ/m3 to the combustion of the composition with combustion heat of 18.8 MJ/m3 leads to a decrease in temperature in the flame core for 100 °C as an average. The intensity of flame radiation on the radiant tubes decreases. Therefore, the operation of furnaces during combustion of methane-hydrogen fraction with a low heat of combustion at the gas oil hydro-treating unit is carried out only with a fresh catalyst, which allows lower flame temperatures in the burner.The experiments to determine the concentration of nitrogen oxides NOx and the burning rate w of the methane-hydrogen fraction in the ON-1000/1 furnace and natural gas in the TGM-84A boiler, depending upon the heat of combustion Qnr were carried out. The obtained results showed that the increase in the hydrogen content Н2 from 10.05 % to 18.36% (by mass) results in an increase in the burning rate w by 45%. The burning rate of natural gas with methane CH4 content of 98.89% in the TGM-84A boiler is 0.84 m/s, i.e. it is 2.5 times lower than the burning rate of the methane- hydrogen fraction with H2 content of 10.05%. The distributions of heat flux from the flame qf over the burner height h in the TGM-84A boiler were obtained in case of natural gas burning and calculation of burning of the methane-hydrogen fraction with a hydrogen content of 10.05% and methane of 28.27%. The comparison of the obtained data shows that burning of methane- hydrogen fraction causes an increase in the incident heat flux qf at the outlet of the burner.


2019 ◽  
Vol 257 ◽  
pp. 01004
Author(s):  
Zhelong Zhao ◽  
Xianyu Wu

As a efficient and simple design, expander cycle is widely applied in LRE engineering, but it is seldomly used on scramjet research. In order to establish a complete mathematical model for expander cycle scramjet, a control-oriented model for expander cycle scramjet is proposed in this paper. This model consists of four major parts: combustor, cooling channel, turbo pump and nozzle and gives the result of pressure, temperature, mach number and velocity distribution of combustor and cooling channel and is capable of simulate both pure supersonic combustion mode and supersonic shock wave mode of the combustor. Each part is given by specific mathematical description, which contains the calculation of airflow, combustion, heat transfer and thermal cracking of kerosene. By putting all these parts together, a complete model is formed. This model is proposed to calculate the performance and condition of the engine precisely, comprehensively, swiftly and can be directly used in further study.


1994 ◽  
Vol 144 ◽  
pp. 185-187
Author(s):  
S. Orlando ◽  
G. Peres ◽  
S. Serio

AbstractWe have developed a detailed siphon flow model for coronal loops. We find scaling laws relating the characteristic parameters of the loop, explore systematically the space of solutions and show that supersonic flows are impossible for realistic values of heat flux at the base of the upflowing leg.


Author(s):  
Yeshayahu Talmon

To bring out details in the fractured surface of a frozen sample in the freeze fracture/freeze-etch technique,the sample or part of it is warmed to enhance water sublimation.One way to do this is to raise the temperature of the entire sample to about -100°C to -90°C. In this case sublimation rates can be calculated by using plots such as Fig.1 (Talmon and Thomas),or by simplified formulae such as that given by Menold and Liittge. To achieve higher rates of sublimation without heating the entire sample a radiative heater can be used (Echlin et al.). In the present paper a simplified method for the calculation of the rates of sublimation under a constant heat flux F [W/m2] at the surface of the sample from a heater placed directly above the sample is described.


2020 ◽  
Vol 117 (6) ◽  
pp. 602
Author(s):  
Heping Liu ◽  
Jianjun Zhang ◽  
Hongbiao Tao ◽  
Hui Zhang

In this article, based on the actual monitored temperature data from mold copper plate with a dense thermocouple layout and the measured magnetic flux density values in a CSP thin-slab mold, the local heat flux and thin-slab solidification features in the funnel-type mold with electromagnetic braking are analyzed. The differences of local heat flux, fluid flow and solidified shell growth features between two steel grades of Q235B with carbon content of 0.19%C and DC01 of 0.03%C under varying operation conditions are discussed. The results show the maximum transverse local heat flux is near the meniscus region of over 0.3 m away from the center of the wide face, which corresponds to the upper flow circulation and the large turbulent kinetic energy in a CSP funnel-type mold. The increased slab width and low casting speed can reduce the fluctuation of the transverse local heat flux near the meniscus. There is a decreased transverse local heat flux in the center of the wide face after the solidified shell is pulled through the transition zone from the funnel-curve to the parallel-cure zone. In order to achieve similar metallurgical effects, the braking strength should increase with the increase of casting speed and slab width. Using the strong EMBr field in a lower casting speed might reverse the desired effects. There exist some differences of solidified shell thinning features for different steel grades in the range of the funnel opening region under the measured operating conditions, which may affect the optimization of the casting process in a CSP caster.


Sign in / Sign up

Export Citation Format

Share Document