Exploring a Multiscale Topology Optimization Design Space Using a Parametric L-system Approach

2022 ◽  
Author(s):  
Brent Bielefeldt ◽  
Richard Beblo ◽  
Joshua D. Deaton ◽  
Kevin Lawson ◽  
Robert Lowe
Author(s):  
Brent R. Bielefeldt ◽  
Darren J. Hartl ◽  
Ergun Akleman

Traditional topology optimization techniques, such as density-based and level set methods, have proven successful in identifying potential design configurations but suffer from rapidly increasing design space dimensionality and convergence to local minima. A heuristic alternative to these approaches couples a genetic algorithm with a Lindenmayer System (L-System), which encodes design variables and governs the development of the structure when coupled with some sort of interpreter. This work discusses the development of a graph-based interpretation scheme referred to as Spatial Interpretation for the Development of Reconfigurable Structures (SPIDRS). This framework allows for the effective exploration of the design space using a limited number of design variables. The theory and implementation of this method are detailed, and a compliant mechanism case study is presented to demonstrate the ability of SPIDRS to generate structures capable of achieving multiple design goals.


2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Brent R. Bielefeldt ◽  
Ergun Akleman ◽  
Gregory W. Reich ◽  
Philip S. Beran ◽  
Darren J. Hartl

Traditional topology optimization techniques, such as density-based and level set methods, have proven successful in identifying potential design configurations for structures and mechanisms but suffer from rapidly increasing design space dimensionality and the possibility of converging to local minima. A heuristic alternative to these approaches couples a genetic algorithm with a Lindenmayer system (L-system), which encodes design variables and governs the development of the structure when coupled with an interpreter to translate genomic information into structural topologies. This work discusses the development of a graph-based interpretation scheme referred to as spatial interpretation for the development of reconfigurable structures (SPIDRS). This framework allows for the effective exploration of mechanism design spaces using a limited number of design variables. The theory and implementation of this method are detailed, and multiple case studies are presented to demonstrate the ability of SPIDRS to generate adaptive structures capable of achieving multiple design goals.


2012 ◽  
Vol 430-432 ◽  
pp. 828-833
Author(s):  
Qiu Sheng Ma ◽  
Yi Cai ◽  
Dong Xing Tian

In this paper, based on ANSYS the topology optimization design for high pressure storage tank was studied by the means of the finite element structural analysis and optimization. the finite element model for optimization design was established. The design variables influence factors and rules on the optimization results are summarized. according to the calculation results the optimal design result for tank is determined considering the manufacturing and processing. The calculation results show that the method is effective in optimization design and provide the basis to further design high pressure tank.


2015 ◽  
Vol 07 (06) ◽  
pp. 1550085 ◽  
Author(s):  
Z. C. He ◽  
G. Y. Zhang ◽  
L. Deng ◽  
Eric Li ◽  
G. R. Liu

The node-based smoothed finite element method (NS-FEM) proposed recently has shown very good properties in solid mechanics, such as providing much better gradient solutions. In this paper, the topology optimization design of the continuum structures under static load is formulated on the basis of NS-FEM. As the node-based smoothing domain is the sub-unit of assembling stiffness matrix in the NS-FEM, the relative density of node-based smoothing domains serves as design variables. In this formulation, the compliance minimization is considered as an objective function, and the topology optimization model is developed using the solid isotropic material with penalization (SIMP) interpolation scheme. The topology optimization problem is then solved by the optimality criteria (OC) method. Finally, the feasibility and efficiency of the proposed method are illustrated with both 2D and 3D examples that are widely used in the topology optimization design.


Author(s):  
Martin Noack ◽  
Arnold Kühhorn ◽  
Markus Kober ◽  
Matthias Firl

AbstractThis paper presents a new FE-based stress-related topology optimization approach for finding bending governed flexible designs. Thereby, the knowledge about an output displacement or force as well as the detailed mounting position is not necessary for the application. The newly developed objective function makes use of the varying stress distribution in the cross section of flexible structures. Hence, each element of the design space must be evaluated with respect to its stress state. Therefore, the method prefers elements experiencing a bending or shear load over elements which are mainly subjected to membrane stresses. In order to determine the stress state of the elements, we use the principal stresses at the Gauss points. For demonstrating the feasibility of the new topology optimization approach, three academic examples are presented and discussed. As a result, the developed sensitivity-based algorithm is able to find usable flexible design concepts with a nearly discrete 0 − 1 density distribution for these examples.


Sign in / Sign up

Export Citation Format

Share Document