scholarly journals Using data analytics to quantify the impact of production test uncertainty on oil flow rate forecast

Author(s):  
Danielle D. Monteiro ◽  
Maria Machado Duque ◽  
Gabriela S. Chaves ◽  
Virgílio M. Ferreira Filho ◽  
Juliana S. Baioco

In general, flow measurement systems in production units only report the daily total production rates. As there is no precise control of individual production of each well, the current well flow rates and their parameters are determined when production tests are conducted. Because production tests are performed periodically (e.g., once a month), information about the wells is limited and operational decisions are made using data that are not updated. Meanwhile, well properties and parameters from the production test are typically used in multiphase flow models to forecast the expected production. However, this is done deterministically without considering the different sources of uncertainties in the production tests. This study aims to introduce uncertainties in oil flow rate forecast. To do this, it is necessary to identify and quantify uncertainties from the data obtained in the production tests, consider them in production modeling, and propagate them by using multiphase flow simulation. This study comprises two main areas: data analytics and multiphase flow simulation. In data analytics, an algorithm is developed using R to analyze and treat the data from production tests. The most significant stochastic variables are identified and data deviation is adjusted to probability distributions with their respective parameters. Random values of the selected variables are then generated using Monte Carlo and Latin Hypercube Sampling (LHS) methods. In multiphase flow simulation, these possible values are used as input. By nodal analysis, the simulator output is a set of oil flow rate values, with their interval of occurrence probabilities. The methodology is applied, using a representative Brazilian offshore field as a case study. The results show the significance of the inclusion of uncertainties to achieve greater accuracy in the multiphase flow analysis of oil production.

2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Ting Liu ◽  
Gabriel Lodewijks

Abstract Abstract On the basis of the influence of dry season on ship traffic flow, the gathering and dissipating process of ship traffic flow was researched with Greenshields linear flow—density relationship model, the intrinsic relationship between the ship traffic congestion state and traffic wave in the unclosed restricted channel segment was emphatically explored when the ship traffic flow in a tributary channel inflows, and the influence law of multiple traffic waves on the ship traffic flow characteristics in unclosed restricted segment is revealed. On this basis, the expressions of traffic wave speed and direction, dissipation time of queued ships and the number of ships affected were provided, and combined with Monte Carlo method, the ship traffic flow simulation model in the restricted channel segment was built. The simulation results show that in closed restricted channel segment the dissipation time of ships queued is mainly related to the ship traffic flow rate of segments A and C, and the total number of ships affected to the ship traffic flow rate of segment A. And in unclosed restricted channel segment, the dissipation time and the total number of ships affected are also determined by the meeting time of the traffic waves in addition to the ship traffic flow rate of segments. The research results can provide the theoretical support for further studying the ship traffic flow in unclosed restricted channel segment with multiple tributaries Article Highlights The inflow of tributaries' ship traffic flows has an obvious impact on the traffic conditions in the unenclosed restricted channel segment. The interaction and influence between multiple ship traffic waves and the mechanism of generating new traffic waves are explained. The expression of both dissipation time of queued ships and the total number of ships affected in the closed and unclosed restricted channel segment are given.


Author(s):  
Namratha Birudaraju ◽  
Adiraju Prasanth Rao ◽  
Sathiyamoorthi V.

The main steps for agricultural practices include preparation of soil, sowing, adding manure, irrigation, harvesting, and storage. For this, one needs to develop modern tools and technologies that can improve production efficiency, product quality, schedule and monitoring the crops, fertilizer spraying, planting, which helps the farmers choose the suitable crop. Efficient techniques are used to analyze huge amount of data which provide real time information about emerging trends. Facilities like fertilizer requirement notifications, predictions on wind directions, satellite-based monitoring are sources of data. Analytics can be used to enable farmers to make decisions based on data. This chapter provides a review of existing work to study the impact of big data on the analysis of agriculture. Analytics creates many chances in the field of agriculture towards smart farming by using hardware, software. The emerging ability to use analytic methods for development promise to transform farming sector to facilitate the poverty reduction which helps to deal with humane crises and conflicts.


Author(s):  
Philipp Zemella ◽  
Thomas Hagemann ◽  
Bastian Pfau ◽  
Hubert Schwarze

Abstract Tilting-pad journal bearings are widely used in turbomachinery industry due to their positive dynamic properties at high rotor speeds. However, the exact description of this dynamic behavior is still part of current research. This paper presents measurement results for a five-pad tilting-pad journal bearing in load between pivot configuration. The bearing is characterized by a nominal diameter of 100 mm, a length of 90 mm, and a pivot offset of 0.6. Investigations include results for surface speeds between 25 and 120 m/s and specific bearing loads ranging from 0.0 to 3.0 MPa. Results of theoretical predictions are commonly derived from perturbation of stationary operation under static load. Therefore, experimental results for stationary operation including pad deflection under static load are presented first to characterize the investigated bearing. Measured results indicate considerable non-laminar flow in the upper region of the investigated range of rotor speeds. Second, dynamic excitation test are performed with excitation frequencies up to 400 Hz to evaluate dynamic coefficients of a stiffness (K) and damping (C) KC-model, and additionally, a KCM-model using additional virtual mass (M) coefficients. KCM-coefficients are obtained by fitting frequency dependent KC-characteristics to the KCM-model structure using least square approach. The wide range of rotating and excitation frequencies leads to subsynchronous as well as supersynchronous vibrations. Excitation forces are applied with multi-sinus and single-sinus characteristics. The latter one allows evaluation of KC-coefficients at the particular frequency ratio in the time domain. Here, frequency and time domain evaluation algorithms for dynamic coefficients are used in order to assess their special properties and quality. The impact of surface speed, bearing load, and oil flow rate on measured and predicted KCM-coefficients is investigated. Measured and predicted results can be well fitted to a KCM-model and show a significant influence of the ratio between fluid film and pivot support stiffness on the speed dependent characteristic of bearing stiffness coefficients. However, the impact of this ratio on damping coefficients is considerably lower. Further investigations on the impact of oil flow rates indicate that a significant decrease of direct damping coefficients exists below a certain level of starvation. Above this limit, direct damping coefficients are nearly independent of oil flow rate. Results are analyzed in detail and demands on improvements for predictions are derived.


Author(s):  
Arram Sriram ◽  
Prasanth Rao Adhiraju ◽  
Praveen Kumar Kalangi ◽  
Sathiyamoorthi V.

Social media websites enable users to create and share content or to participate in social networking. The main advantage of social media is the ability to communicate with different people to share their knowledge and discuss social events. The impact of social media on people and their behavior is enormous and also solves many problems if it works fine. But there may be negative aspects as well when they are exchange their ideas between people of very different cultures, religions, different age group, and misbehavior of a few users. These problems are addressed using data analytics, which takes people context into account, learns from it, and takes proactive steps according to their situation and expectations, avoiding user intervention as much as possible. This chapter presents all possible problems in social media and enabling those scenarios with effective solutions.


Author(s):  
Philipp Zemella ◽  
Thomas Hagemann ◽  
Bastian Pfau ◽  
Hubert Schwarze

Abstract This paper presents measurement results for a five-pad tilting-pad journal bearing in load between pivot configuration. The bearing is characterized by a nominal diameter of 100 mm, a length of 90 mm, and a pivot offset of 0.6. Investigations include results for surface speeds between 25 and 120 m/s and specific bearing loads ranging from 0.0 to 3.0 MPa and different lube oil flow rates. Dynamic excitation test are performed with excitation frequencies up to 400 Hz to evaluate dynamic coefficients of a stiffness (K) and damping (C) KC-model, and additionally, a KCM-model using additional virtual mass (M) coefficients. The impact of surface speed, bearing load, and oil flow rate on measured and predicted KCM-coefficients is investigated. Measured and predicted results can be well fitted to a KCM-model and show a significant influence of the ratio between fluid film and pivot support stiffness on the speed dependent characteristic of bearing stiffness coefficients. However, the impact of this ratio on damping coefficients is considerably lower. Further investigations on the impact of oil flow rates indicate that a significant decrease of direct damping coefficients exists below a certain level of starvation. Above this limit, direct damping coefficients are nearly independent of oil flow rate. Results are analyzed in detail and demands on improvements for predictions are derived.


Sign in / Sign up

Export Citation Format

Share Document