scholarly journals A methodology to predict the gas permeability parameters of tight reservoirs from nitrogen sorption isotherms and mercury porosimetry curves

Author(s):  
Christos D. Tsakiroglou ◽  
Adnan Al Hinai ◽  
Reza Rezaee

A methodology is suggested for the explicit computation of the absolute permeability and Knudsen diffusion coefficient of tight rocks (shales) from pore structure properties. The pore space is regarded as a pore-and-throat network quantified by the statistical moments of bimodal pore and throat size distributions, pore shape factors, and pore accessibility function. With the aid of percolation theory, analytic equations are developed to express the nitrogen (N2) adsorption/desorption isotherms and mercury (Hg) intrusion curve as functions of all pertinent pore structure parameters. A multistep procedure is adopted for the successive estimation of each set of parameters by the inverse modeling of N2 adsorption–desorption isotherms, and Hg intrusion curve. With the aid of critical path analysis of percolation theory, the absolute permeability and Knudsen diffusion coefficient are computed as functions of estimated pore network properties. Application of the methodology to the datasets of several shale samples enables us to evaluate the predictability of the approach.

2014 ◽  
Vol 962-965 ◽  
pp. 890-898
Author(s):  
Jin Ping Li ◽  
Da Zhen Tang ◽  
Ting Xu Yu ◽  
Gang Sun

Pore structure characteristics and the effect of lithotype and maceral on pore for three types of high-volatile bituminous coals from Binchang area were investigated by combined low-temperature nitrogen adsorption/desorption, nuclear magnetic resonance (NMR), scanning electron microscope (SEM) and maceral analysis. The low temperature N2 adsorption/desorption test results show that: micropores are more abundant than transitional pores with high BET surface area; two types of pore structures can be identified by adsorption/desorption isotherms; Pore morphology is mainly represented by well-connected, ink-bottled, cylindrical and parallel plate pores. NMR T2 distributions at full saturated condition are apparent or less obvious trimodal and three types of T2 distributions are identified; Seepage pores are better developed when compared with the middle-high rank coal. Further research found that the three coal lithotypes are featured by remarkably different pore structure characteristics and maceral contents of coal are linearly correlated to some of pore structure parameters.


Author(s):  
M Schweighart ◽  
W Macher ◽  
G Kargl ◽  
B Gundlach ◽  
H L Capelo

Abstract According to current theories of the formation of stellar systems, comets belong to the oldest and most pristine class of bodies to be found around a star. When approaching the Sun, the nucleus shows increasing activity and a pressure increase inside the material causes sublimated and trapped gas molecules to stream away from their regions of origin towards the surface. The present work studies two essential mechanisms of gas transport through a porous layer, namely the Darcy and the Knudsen flow. Gas flow measurements are performed in the laboratory with several analogue materials, which are mimicking dry cometary surface properties. In this first series of measurements, the aim was to separate gas transport properties from internal sources like local sublimation or release of trapped gases. Therefore, only dry granular materials were used and maintaining a low temperature environment was unnecessary. The gas permeability and the Knudsen diffusion coefficient of the sample materials are obtained, thereby representing the relative importance of the respective flow mechanism. The experiments performed with air at a stable room temperature show that the grain size distribution and the packing density of the sample play a major role for the permeability of the sample. The larger the grains, the bigger the permeability and the Knudsen diffusion coefficient. From the latter we estimated effective pore diameters. Finally, we explain how these parameters can be adapted to obtain the gas flow properties of the investigated analogue materials under the conditions to be expected on the comet.


ISRN Ceramics ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
E. Salimi ◽  
J. Javadpour ◽  
M. Anbia

Hydroxyapatite (HAp) particles, a potential starting material for bone substitutes, with nanopores were synthesized in the presence of cetyltrimethylammonium bromide (CTAB) and P123 as cationic and nonionic surfactants as the structuring units. Effect of nonionic surfactant concentration on surface areas is also investigated. Based on N2 adsorption-desorption isotherms investigation, surface area increased up to 50 m2/g by using P123 and 147 m2/g by using CTAB as porosity agent. Pore structure remained even after the removal of surfactant and calcinations at 400°C.


Fuel ◽  
2018 ◽  
Vol 218 ◽  
pp. 67-77 ◽  
Author(s):  
Yueliang Liu ◽  
Huazhou Andy Li ◽  
Yuanyuan Tian ◽  
Zhehui Jin ◽  
Hucheng Deng

Geophysics ◽  
2006 ◽  
Vol 71 (1) ◽  
pp. N11-N19 ◽  
Author(s):  
Ayako Kameda ◽  
Jack Dvorkin ◽  
Youngseuk Keehm ◽  
Amos Nur ◽  
William Bosl

Numerical simulation of laboratory experiments on rocks, or digital rock physics, is an emerging field that may eventually benefit the petroleum industry. For numerical experimentation to find its way into the mainstream, it must be practical and easily repeatable — i.e., implemented on standard hardware and in real time. This condition reduces the size of a digital sample to just a few grains across. Also, small physical fragments of rock, such as cuttings, may be the only material available to produce digital images. Will the results be meaningful for a larger rock volume? To address this question, we use a number of natural and artificial medium- to high-porosity, well-sorted sandstones. The 3D microtomography volumes are obtained from each physical sample. Then, analogous to making thin sections of drill cuttings, we select a large number of small 2D slices from a 3D scan. As a result, a single physical sample produces hundreds of 2D virtual-drill-cuttings images. Corresponding 3D pore-space realizations are generated statistically from these 2D images; fluid flow is simulated in three dimensions, and the absolute permeability is computed. The results show that small fragments of medium– to high-porosity sandstones that are statistically subrepresentative of a larger sample will not yield the exact porosity and permeability of the sample. However, a significant number of small fragments will yield a site-specific permeability-porosity trend that can then be used to estimate the absolute permeability from independent porosity data obtained in the well or inferred from seismic techniques.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Esmael Salimi ◽  
Jafar Javadpour

Wormhole-like mesostructured monetite was successfully synthesized using cetyltrimethylammonium bromide (C19H42BrN, CTAB), as a porosity agent. X-ray techniques and FTIR reveal that the crystalline grains consist of highly crystalline pure monetite phase. Monetite rods with diameter around 20–40 nm and length in the range of 50–200 nm were confirmed by FESEM and TEM. Based on N2adsorption-desorption isotherms investigation, surface area increased up to 31.5 m2/g due to the removal of surfactant after calcinations at 400°C. The results indicate that CTAB can not only affect monetite crystallization but also change particles morphology from plate shape to rod-like.


Author(s):  
A. S. Roslyakova ◽  
A. G. Kalmykov ◽  
G. A. Kalmykov ◽  
R. A. Khamidullin ◽  
N. I. Korobova ◽  
...  

The paper presents a study of the structure and reservoir properties of rocks of the Bazhenov formation in the sections of three wells located in different structural zones of the Priobskoye field. It is shown that the porosity of the samples varies from 0.02% to 6.95%, the absolute gas permeability of the rocks reaches 1.364 mD. It is established that the collectors in the Bazhenov formation are confined to silicite-radiolarites (possessing porosity associated with the leaching of radiolarian shells) and kerogen-clay-siliceous rock and kerogen-clay silicite (porosity is associated with the release of space between the clay-siliceous matrix and kerogen by ripening organic matter). The following secondary processes influenced the formation of voids in these lithotypes: recrystallization of radiolarians and local warming up.


Sign in / Sign up

Export Citation Format

Share Document