scholarly journals Synthesis and Characterization of Nanoporous Monetite Which Can Be Applicable for Drug Carrier

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Esmael Salimi ◽  
Jafar Javadpour

Wormhole-like mesostructured monetite was successfully synthesized using cetyltrimethylammonium bromide (C19H42BrN, CTAB), as a porosity agent. X-ray techniques and FTIR reveal that the crystalline grains consist of highly crystalline pure monetite phase. Monetite rods with diameter around 20–40 nm and length in the range of 50–200 nm were confirmed by FESEM and TEM. Based on N2adsorption-desorption isotherms investigation, surface area increased up to 31.5 m2/g due to the removal of surfactant after calcinations at 400°C. The results indicate that CTAB can not only affect monetite crystallization but also change particles morphology from plate shape to rod-like.

2013 ◽  
Vol 594-595 ◽  
pp. 73-77 ◽  
Author(s):  
Sze Mei Chin ◽  
Suriati Sufian ◽  
Jeefferie Abd Razak

This paper highlights on the hydrogen production through photocatalytic activity by using hematite nanoparticles synthesized from self-combustion method based on different stirring period. The morphologies and microstructures of the nanostructures were determined using Field-Emission Scanning Electron Microscope (FESEM), X-Ray Diffractometer (XRD) and Particle Size Analyser (PSA). Besides that, surface area analyser was used to determine the BET surface area of the hematite samples. The hematite nanocatalyst as-synthesized are proven to be rhombohedral crystalline hematite (α-Fe2O3) with particle diameters ranging from 60-140 nm. The BET specific surface area of hematite samples increased from 5.437 to 7.6425 m2/g with increasing stirring period from 1 to 4 weeks. This caused the amount of hydrogen gas produced from photocatalytic water splitting to increase as well.


2014 ◽  
Vol 968 ◽  
pp. 49-52
Author(s):  
Qin Qin Hou

A new nanocomposite, semiconducting polythiophene (PT) confined in mesoporous silica (SBA-15) was synthesized. PT was formed in the pores of SBA-15 by subsequent oxidative polymerization with FeCl3. Different techniques were used to characterize the nanocomposite formation. X-ray diffraction (XRD) and N2 adsorption/desorption analysis showed that the nanocomposite possesses mesoporous structure, and the residual pore volume of nanocomposite was significantly lower than that of pure empty SBA-15. Scan electron micrographs confirmed the presence of polythiophene inside pore channels of the host, and thermogravimetric analysis proved confinement effect in the channel system.


2010 ◽  
Vol 660-661 ◽  
pp. 561-566
Author(s):  
L.A. Lima ◽  
B.V. Sousa ◽  
Meiry Glaúcia Freire Rodrigues

Catalysts supported on SBA-15 were obtained by wet impregnation using aqueous solution of cobalt nitrate, where different contents of cobalt (5 wt% and 10 wt%) were prepared. The molecular sieve SBA-15 was synthesized using tetra ethyl ortho silicate (TEOS) as silicate source, and triblock copolymer, poly-(ethylene oxide)-poly (propylene oxide)-poly-(ethylene oxide) PEO-PPO-PEO as the organic structure directing agent. These materials were characterized by X-ray diffraction (XRD), X-ray energy dispersion spectrophotometer (EDX) and Nitrogen adsorption–desorption isotherms (BET). The results from the XRD showed that the molecular sieve mesoporous (SBA-15) was identified by X-ray diffraction, especially from the (210) and (300) peaks, which represent a typical spectrum for the SBA-15. Characterization of catalysts by Nitrogen adsorption–desorption isotherms (BET) made it possible to verify the the samples had been of type IV with hysteresis of corresponding the H2 type the porous materials.


2010 ◽  
Vol 96 ◽  
pp. 129-133 ◽  
Author(s):  
Hong Yan Xu ◽  
Ai Hong Guo ◽  
Xing Tong Chen

. Al-pillared rectorites (Al-REC) were synthesized from natural calcium rectorite through the exchange of inter-lamellar ions with hydroxyalumina polycations. Furthermore, the morphology, composite structure and pore properties of such composite materials were investigated by Powder X-ray Diffraction (XRD), Fourier Transformation Infra-red Spectra (FTIR) and Nitrogen Adsorption-Desorption Isotherms. The products retain their layered structure and their pore structures are a slit-shaped pore between plate-like particles. The resultant products possess BJH pore volume as large as 0.04cm3g-1, high BET specific surface area of over 100m2g-1, narrow pore size distribution in the mesopore region of 7-9nm after thermal treatment at 300 °C.


2007 ◽  
Vol 121-123 ◽  
pp. 473-478 ◽  
Author(s):  
Yu Fang Zhu ◽  
Jian Lin Shi ◽  
Wei Hua Shen

A family of mesoporous multilamellar silica vesicles has been successfully synthesized by using P123 as structure directing agent and hexane as co-surfactant. The structure was characterized with XRD, TEM, and N2 adsorption-desorption isotherms. This multilamellar silica vesicle materials process high specific area, large pore volume, and a bimodale pore size distribution. Furthermore, these materials are stable when the surfactant is removed at 530 oC.


2013 ◽  
Vol 328 ◽  
pp. 729-733
Author(s):  
Kun Xiang ◽  
Mei Juan Li ◽  
Dao Ren Gong ◽  
Qiang Guo Luo ◽  
Qiang Shen

Three-dimensional (3D) flowerlike CuO structures were prepared successfully by reducing copper chloride (CuCl2·2H2O) aqueous solution in the presence of cetyltrimethylammonium bromide (CTAB). The as-prepared CuO structures were characterized by UV-Vis, X-ray powder diffraction (XRD), FESEM and EDS techniques. The flowerlike CuO structures consisted of Salix leaf-like nanostructures. A possible growth mechanism for the formation of 3D flowerlike CuO structure was proposed. The processes of ripening and directed growing of nanoparticles were most important factors to obtain the 3D flowerlike CuO structures.


ISRN Ceramics ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
E. Salimi ◽  
J. Javadpour ◽  
M. Anbia

Hydroxyapatite (HAp) particles, a potential starting material for bone substitutes, with nanopores were synthesized in the presence of cetyltrimethylammonium bromide (CTAB) and P123 as cationic and nonionic surfactants as the structuring units. Effect of nonionic surfactant concentration on surface areas is also investigated. Based on N2 adsorption-desorption isotherms investigation, surface area increased up to 50 m2/g by using P123 and 147 m2/g by using CTAB as porosity agent. Pore structure remained even after the removal of surfactant and calcinations at 400°C.


2015 ◽  
Vol 6 (1) ◽  
pp. 119 ◽  
Author(s):  
O. C. Vergara Estupiñán ◽  
J. A. Gómez Cuaspud

ResumenEste trabajo investigó la síntesis y la caracterización de un material tipo perovskita basado en el sistema La0,95Sr0,05CrO3, mediante el método de polimerización-combustión, utilizando ácido cítrico para la conformación de especies intermedias de coordinación tipo citrato, que evolucionan en función de la temperatura hasta la consolidación de la fase cristalina buscada. La caracterización del precursor metalorgánico se realizó mediante análisis térmicos (TGA-DTA), con el fin de establecer una temperatura ideal de consolidación de la fase cristalina buscada. Los análisis de difracción de rayos X (XRD), microscopía electrónica de transmisión (TEM), fluorescencia de rayos X por microsonda (EDX) y análisis de área superficial (BET) se realizaron sobre el material cerámico calcinado, y revelaron la obtención de una estructura cristalina ortorrómbica nanoestructurada con grupo espacial Pnma (62), con un tamaño promedio de cristalito de 20 nm. Los análisis derivados de la microscopía electrónica de transmisión revelaron que el material está conformado por agregados del orden nanométrico con una serie de propiedades texturales y morfológicas específicas para eventual aplicación a nivel catalítico, lo que guarda una estrecha relación con los datos derivados de la medida del área superficial, obtenidos por la técnica BET. Finalmente, la valoración de la composición mediante fluorescencia de rayos X permitió determinar que el control en la composición es uno de los parámetros claves en este proceso de síntesis, lo cual permite validar el método utilizado y posibilita el empleo de los materiales obtenidos en potenciales aplicaciones tecnológicas. AbstractThis work investigated the synthesis and characterization of a perovskite material based on theLa0.95Sr0.05CrO3 system, by a wet chemical route that involves the combustion-polymerization method, using citric acid as complexing agent, in order to obtain intermediate coordination species, which evolve depending on the temperature until the desired consolidation crystalline phase is obtained. The metal-organic precursor characterization was performed by thermal analyses (TGA-DTA), in order to evaluate an ideal consolidation temperature of the searched crystalline phase. The analysis by the X-ray diraction (XRD), the transmission electron microscopy (TEM), the X-ray fluorescence microprobe (EDX) and the surface area (BET), were performed over the calcined ceramic material and revealed the obtention of a nanostructured orthorhombic crystal structure with a Pnma (62) space group, and a 20 nm crystallite average size. The analysis derived from the transmission electron microscopy, revealed that the material is composed of aggregates of nanometric range with a series of textural and specific morphological properties for an eventual application at the catalytic level, which is correlated with the data derived from the measurement of the surface area obtained by the BET technique. Finally, the composition by X-ray fluorescence assessment revealed that stoichiometric control in composition is one of the key parameters in this synthesis process, which allows to validate the used method and enables to employ the obtained materials in potential technological applications.


Cerâmica ◽  
2008 ◽  
Vol 54 (330) ◽  
pp. 203-212 ◽  
Author(s):  
D. Singh ◽  
R. Kumar ◽  
A. Kumar ◽  
K. N. Rai

This paper discusses synthesis and characterization of (i) rice husk based nanosilica, (ii) nanosilica carbon composite granules and (iii) phosphoric acid activated ash silica. These have been produced by burning husk in air, charring husk in hydrogen and activating husk silica with H3PO4 respectively. X-ray diffraction studies of these products reveal increasing peak width (amorphosity) with decreasing burning temperature. The activated rice husk silica transforms to crystalline product when burnt above 1000 ºC. The variation of surface area and pore volume with burning temperature show different behavior for air fired and hydrogen charred products. Activation energy associated with change in surface area for air fired and hydrogen charred samples have also been studied. Rate of variation in surface area with temperature indicate different trend. The validations of these products have been evaluated by decolorizing capacity of standard molasses and iodine solution. The adsorptive powers of these products have been found to be highest for activated silica and lowest for hydrogenated ash.


2018 ◽  
Vol 2 (1) ◽  
pp. 7
Author(s):  
S Chirino ◽  
Jaime Diaz ◽  
N Monteblanco ◽  
E Valderrama

The synthesis and characterization of Ti and TiN thin films of different thicknesses was carried out on a martensitic stainless steel AISI 410 substrate used for tool manufacturing. The mechanical parameters between the interacting surfaces such as thickness, adhesion and hardness were measured. By means of the scanning electron microscope (SEM) the superficial morphology of the Ti/TiN interface was observed, finding that the growth was of columnar grains and by means of EDAX the existence of titanium was verified.  Using X-ray diffraction (XRD) it was possible to observe the presence of residual stresses (~ -3.1 GPa) due to the different crystalline phases in the coating. Under X-ray photoemission spectroscopy (XPS) it was possible to observe the molecular chemical composition of the coating surface, being Ti-N, Ti-N-O and Ti-O the predominant ones.


Sign in / Sign up

Export Citation Format

Share Document