scholarly journals Design and key parameter optimization of an agitated soybean seed metering device with horizontal seed filling

Author(s):  
Honglei Jia ◽  
◽  
Yulong Chen ◽  
Jiale Zhao ◽  
Mingzhuo Guo ◽  
...  
2018 ◽  
Vol 169 ◽  
pp. 01035
Author(s):  
Qinghui Lai ◽  
Ziwu Hua ◽  
Jinlong Xing ◽  
Wenpeng Ma

The cell wheel seed metering device was improved and a stirring seed-filling device was added to improve the seed-filling performance of cell wheel pseudo-ginseng precision seed metering devices. Using pseudo-ginseng seeds in Wenshan Prefecture, Yunnan Province as the objects for seed metering, the software application EDEM was adopted based on the discrete element method for the simulation calculation and analysis of the seed-filling performance of the seed metering device under 4 rotational speeds of the cell wheel and 6 rotational speeds of the stir wheel. The simulation results indicate that the filling ratio increases as the rotational speed of the stir wheel increases under a constant rotational speed of the cell wheel. Test verification of the simulation analysis results was conducted on the test bed of the seed metering device. The results indicate that increasing the rotational speed of the stir wheel can obtain a filling ratio of over 90%. The test results display a similar variation trend to that of the simulation analysis with an error of average filling ratio less than 5%. Therefore, it is feasible to analyze the seed-filling performance of the stirring and seed-filling device of the seed metering device with the discrete element method.


2008 ◽  
Vol 148 (1) ◽  
pp. 504-518 ◽  
Author(s):  
Ganesh Kumar Agrawal ◽  
Martin Hajduch ◽  
Katherine Graham ◽  
Jay J. Thelen

2012 ◽  
Vol 94 (2) ◽  
pp. 63-71 ◽  
Author(s):  
ZHENFENG JIANG ◽  
YINGPENG HAN ◽  
WEILI TENG ◽  
YONGGUANG LI ◽  
XUE ZHAO ◽  
...  

SummarySeed filling rate of soybean has been shown to be a dynamic process in different developmental stages affected by both genotype and environment. The objective of the present study was to determine additive, epistatic and quantitative trait loci (QTLs)×environment interaction (QE) effects of the QTL underlying a seed filling rate of soybean. One hundred and forty-three recombinant inbred lines (RILs) derived from the cross of Charleston and Dongnong 594 were used with 2 years of field data (2004 and 2005). Eleven QTLs with significantly unconditional and conditional additive (a) effect and/or additive×environment interaction (ae) effect at different filling stages were identified. Of them six QTLs showed positive a effects and four QTLs had negative a effects on the seed filling rate during seed development. aa and aae effects of 12 pairs of QTLs were identified by unconditional mapping from the initial stage to the final stage. Thirteen pairs of QTLs underlying the seed filling rate with aa and aae effects were identified by conditional mapping. QTLs with aa and aae (additive×additive×environment) effects appeared to vary at different filling stages. Our results demonstrated that the mass filling rate in soybean seed were under genetic and environmental control.


2018 ◽  
Vol 5 (2) ◽  
pp. 91-96 ◽  
Author(s):  
Marcos Altomani Neves Dias ◽  
André Kitaro Mocelin Urano ◽  
Deborah Bueno Da Silva ◽  
Silvio Moure Cicero

Seed treatment (ST) is an important practice for soybean crop. This research had the objective to evaluate the influence of seed moisture content in the response to different spray volumes (SV) used for seed treatment in soybean, considering effects on seed physiological quality. Three seed lots with distinct moistures were used: 7.2%, 10.1% and 13.0%. Untreated seeds (control) and three SV were tested: 8, 13 and 18 mL kg-1. All lots received the same treatment combination, containing insecticide, fungicide, fertilizer and biostimulant. This combination represented 8 mL kg-1 of SV; the doses of 13 and 18 mL kg-1 were obtained by adding 5 and 10 mL kg-1 of water, respectively. Evaluations of seed physiological quality consisted of electrical conductivity, seed respiration, germination and vigor tests. Results of all tests demonstrates that low-moisture soybean seeds (7.2%) are negatively affected by seed treatment within an SV range of 8 to 18 mL kg-1, while untreated seeds with equal moisture are not affected. Oppositely, high-moisture seeds (13.0%) are not affected by the SV tested, while intermediate-moisture seeds (10.1%) are affected by the higher SV. This result highlights seed moisture as a key parameter to be managed before soybean ST, aiming to maintain a high physiological quality.


2011 ◽  
Vol 62 (10) ◽  
pp. 876 ◽  
Author(s):  
H. F. Zheng ◽  
L. D. Chen ◽  
X. Z. Han

Developing and assessing successful strategies to alleviate adverse impact of climate warming presents a new opportunity for sustainable agriculture and adaptation investment. Efforts to anticipate adaptation of cropping systems may benefit from understanding the global warming effects within decades. This study quantitatively examines the temperature warming impacts during, respectively, growing season and seed filling on soybean yields by using data from long-term field fertilisation experiments from 1987 to 2004. Here we report that grain yields significantly decreased with rising temperature during growing season, whereas the effects of increasing temperature at seed-filling stage on crop yields were significantly positive. The results indicate that a further temperature increment during seed filling appears to decrease soybean system’s risk of yield reduction. Importantly, we inferred that earlier occurrence of seed filling would increase the temperature of this period. The implication is that advancing the onset of soybean seed filling could be an effective adaptation option to global warming, providing an average yield benefit of ~14% per 10 days before the present date.


Sign in / Sign up

Export Citation Format

Share Document