scholarly journals INFLUENCE OF SOYBEAN SEED MOISTURE CONTENT IN THE RESPONSE TO SEED TREATMENT IN SOYBEAN

2018 ◽  
Vol 5 (2) ◽  
pp. 91-96 ◽  
Author(s):  
Marcos Altomani Neves Dias ◽  
André Kitaro Mocelin Urano ◽  
Deborah Bueno Da Silva ◽  
Silvio Moure Cicero

Seed treatment (ST) is an important practice for soybean crop. This research had the objective to evaluate the influence of seed moisture content in the response to different spray volumes (SV) used for seed treatment in soybean, considering effects on seed physiological quality. Three seed lots with distinct moistures were used: 7.2%, 10.1% and 13.0%. Untreated seeds (control) and three SV were tested: 8, 13 and 18 mL kg-1. All lots received the same treatment combination, containing insecticide, fungicide, fertilizer and biostimulant. This combination represented 8 mL kg-1 of SV; the doses of 13 and 18 mL kg-1 were obtained by adding 5 and 10 mL kg-1 of water, respectively. Evaluations of seed physiological quality consisted of electrical conductivity, seed respiration, germination and vigor tests. Results of all tests demonstrates that low-moisture soybean seeds (7.2%) are negatively affected by seed treatment within an SV range of 8 to 18 mL kg-1, while untreated seeds with equal moisture are not affected. Oppositely, high-moisture seeds (13.0%) are not affected by the SV tested, while intermediate-moisture seeds (10.1%) are affected by the higher SV. This result highlights seed moisture as a key parameter to be managed before soybean ST, aiming to maintain a high physiological quality.

2018 ◽  
Vol 13 (6) ◽  
pp. 191
Author(s):  
Raden Sujayadi ◽  
Supyani Supyani ◽  
Edi Purwanto

One of the obstacles in providing high quality soybean (Glycine max) seed is the infection of seed-borne fungal pathogens. Micro wave treatment is one of the alternative methods to control the seed-borne pathogens effectively but it needs to be further developed. This research consisted of two stages. The first stage was aimed to determine the best soybean seed moisture content in maintaining seed physiological quality after exposing to micro wave. The second stage was aimed to determine the most effective duration of micro wave exposure to reduce the rate of infection of seed-borne fungal pathogens using the best moisture content resulted from the first stage. The experiment  on seed moisture indicated that 9.20% was the best seed moisture content in maintaining the physiological quality when the seed was exposed to micro wave.  Furthermore, micro wave exposure of 60 seconds was able to control Aspergillus flavus, while the exposure of  80 seconds was able to control Fusarium sp., Curvularia sp., and A. niger.


2004 ◽  
Vol 26 (1) ◽  
pp. 120-124 ◽  
Author(s):  
Silmar T. Peske ◽  
Alberto Höfs ◽  
Elton Hamer

It is common to see in any soybean plant that seeds reach maturity at different times. Thus the objective of the present study was to determine the magnitude of the seed moisture range at different stages of maturation in a soybean plant. The field study was conducted in a tropical region in the state of Mato Grosso - Brazil, established with foundation seeds of the MTBR-45 cultivar, and at flowering, 100 plants were marked at the same maturity stage. Harvesting began when seeds still were at high moisture content (MC). At each of eight harvesting times, during 16 days, all pods from two plants were harvested and the seeds from each pod were hand threshed individually and determined the moisture content . The results revealed that there is a great distribution of seed MC in a soybean plant, where at physiological maturity, the magnitude can reach more than 30 percentage points. Also, even with an average MC below 12%, there were more than 20 % of the seeds with MC above 13% and some seeds at this point had been waiting to be harvested for more than a week. The following conclusions and/or recommendations can be taken: 1- The great seed MC range in a soybean seed lot harvested at field maturity leads to the presence of seeds susceptible to mechanical damage and with MC unsafe for adequate storage; 2 - It is recommended that harvesting be accomplished when the seeds are in the 15-18% MC range, in order to minimize field deterioration and the percentage of seeds with high MC; 3- Drying is recommended, even when soybean seeds are in their average MC safe for storage.


2020 ◽  
Vol 27 ◽  
pp. 226-231
Author(s):  
O. A. Zadorozhna ◽  
O. M. Bezugla ◽  
O. N. Vus ◽  
O.G. Suprun ◽  
T.P. Shyianova

Aim. Analysis of soybean (Glycine max (L.) Merr.) germplasm seed longevity with different biochemical composition for further storage optimization in active collections and during long-term storage. Methods. The content of protein, oil, fatty acid composition (palmitic, palmitic-oleic, stearic, oleic, linoleic, linolenic, eicosenic, behenic) in experimental soybean seed samples was analyzed. The process of accelerated storage aging, storage at –20°C were carried out at original seed moisture content and after additional drying. Laboratory and field indexes of seed germinability, mophophysiological state of seedlings, elements of crop structure were evaluated. Results. The longevity of soybean seed germplasm with different biochemical composition, different degree of drying was determined. The statistical relationship between fatty acid content and germination of soybean seeds in experimental and control variants was established. Conclusions. Drying to 4% seed moisture content extends the longevity of soybean seeds with different biochemical composition. Extra drying should be applied in special modes even for seeds with 7% moisture content. Keywords: germplasm, soybean, storage, longevity, moisture content.


2018 ◽  
Vol 64 (No. 2) ◽  
pp. 96-103
Author(s):  
Krička Tajana ◽  
Matin Ana ◽  
Voća Neven ◽  
Pospišil Ana ◽  
Grubor Mateja ◽  
...  

After harvesting, soybean seed must be thermally treated because of the increased moisture content. The most common thermal treatment of soybean is roasting, with three indicators that are critical for the process itself: seed moisture content, roasting period and process temperature. Following the above-mentioned, the aim of this paper was to determine nutritional and energy changes in three soybean varieties (‘Gordana’, ‘Sivka’ and ‘Slavonka’). After collecting the samples, the nutrient structure of the core and energy components of seed hull for each variety were determined before and after the heat treatment by roasting. The roasted soybean seeds of the specified varieties were dried by exposure to temperatures of 125°C and 135°C in the duration of 10, 20 and 30 minutes. The results show that significant changes occurred in nutritional properties of soybean seed core in relation to temperature and time of roasting, as well as to assortment. There are also significant differences in elements, which affects the energy properties of soy seed hulls depending on temperature and duration of the procedure. 


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 577c-577
Author(s):  
Noël Pallais

True potato seed of Atzimba × 104.12LB (intermediate dormancy) was dried to seed moisture contents ranging from 3.85 to 12.5% (dry wt basis) and was stored for 2 years at 30, 15 and 5°C. Seed was tested for various germination and seedling vigor criteria at 4 month intervals. Seed dormancy and viability were better preserved at seed moisture levels below 7% and as temperature decreased. High moisture (>9%) was lethal to seed stored at 30°C. TPS should be stored at <5% seed moisture content. Under this condition seed dormancy in the genotype studied was lost after about 12 months at 30°C.


2018 ◽  
Vol 10 (8) ◽  
pp. 468
Author(s):  
C. R. Bork ◽  
A. S. Almeida ◽  
C. S. Castellano ◽  
G. Zimmer ◽  
T. D. Avila ◽  
...  

The aim of this study was to analyze soybean seed physiological quality after being subjected to various mixtures of pesticides via industrial seed treatment. The experiment was performed at the seed laboratory of the company BioGrow, located at São Paulo-SP, using soybean seeds cultivar NS 6700 IPRO which were subjected to 11 different treatments. Seed treatment was carried out using a treater Momesso, model L5-K, calibrated to apply a spray volume of 0.5 L 100 kg-1 of seeds in which the volume of each treatment was adjusted using distilled water. After treatment, seeds were spread over plastic strays for drying for a period of 24 hours under environmental conditions. Once dry, seeds were packed in paper bags and stored for 0 (control), 45, 90, 135 and 180 days, under uncontrolled conditions of temperature and relative humidity, when seed physiological quality was evaluated using the following tests: germination, accelerated aging, seedling emergence, speed of emergence index and speed of emergence. Soybean industrial seed treatment before storage for up to 180 days is practicable using the mixtures of pesticides tested for storing seeds under environmental conditions. All treatments tested contribute to the maintenance of seed quality throughout storage.


1965 ◽  
Vol 16 (3) ◽  
pp. 301 ◽  
Author(s):  
JS Gladstones ◽  
CM Francis

Seeds of Lupinus angustifolius were given X-ray doses of 2.5, 5, 10, and 20 kr at each of 12 moisture contents ranging from 6.1 to 18.1 % (wet weight basis). Various measures of injury were recorded in the X1 generation, and the types and rates of mutations in the X2. At moisture contents below 16%, total mutation rates were closely correlated with X1 injury. Injury and mutation rate decreased with increasing moisture up to 11–12% moisture, and thereafter remained at a constant minimum up to 16%. Between 16 and 18% moisture there was again an increase in X1 injury, but not in mutation rate. Between 6 and 12 % moisture, a linear relationship was found between moisture content and the logarithm of the dose required to cause a given level of injury or mutation. A possible mechanism for such a pattern of protection is discussed. Lethal mutations increased as a proportion of all mutations as dose and mutation rate increased. There were also proportionately more lethals at high moisture contents than in lower moisture treatments giving the same mutation rates. It is concluded that lethal and seedling chlorophyll-deficient mutations could be misleading when used as indicators of total and viable mutation rates, and that, contrary to the conclusions of some previous authors, no advantage is likely to be gained in practical breeding work from irradiating at high seed moisture contents.


2013 ◽  
Vol 35 (4) ◽  
pp. 409-418 ◽  
Author(s):  
Heria de Freitas Teles ◽  
Larissa Leandro Pires ◽  
Marcos Gomes da Cunha ◽  
Flavio Pereira dos Santos ◽  
Francisco Ameloti Neto

Soybean (Glycine max L. Merrill) is infected by a large number of fungal pathogens, among them white mold agent [Sclerotinia sclerotiorum (Lib) de Bary]. The objective of this study was to verify the effect of the seed-processing stages on the physical and physiological qualities and on the incidence of S. sclerotiorum in soybean seeds. In this study, seeds from eight cultivars coming from production fields naturally infested in the counties of the State of Goiás, Brazil, from two harvests (2009/2010 and 2010/2011), were used. Samples were collected in the processing stages: hopper, pre-cleaning, discard one (from pre-cleaning), cleaning, sieve classifiers, spiral, gravity table, and discard two (after cleaning until processing ending). The following parameters were evaluated: seed- moisture content, physical purity, germination and tetrazolium. Additional tests and the detection of S. sclerotiorum in paper roll and the neon method were performed. The processing of soybean seeds improves the physical and physiological quality of the seed lots, in addition to eliminating sclerotia. The stages of pre-cleaning and cleaning significantly reduce sclerotia in seed lot. The amount of sclerotia in the sample is not necessarily correlated with the incidence of S. sclerotiorum in mycelial form.


2018 ◽  
Vol 21 (1) ◽  
pp. 131-141
Author(s):  
MR Ali ◽  
MM Rahman ◽  
MA Wadud ◽  
AHF Fahim ◽  
MS Nahar

Soybean (Glycine max) seed loses its viability in the storage which causes shortage in supply of quality seed and consequently hinders the expansion of soybean cultivation in Bangladesh.Losses of seed viability of soybean (Glycine max) in traditional storage is very common in the tropical environment. An experiment was conducted at the Seed Laboratory, Regional Agricultural Research Station, Bangladesh Agricultural Research Institute (BARI), Jamalpur in 2011 and 2012 to find out the effect of seed moisture content and types of storage container on soybean seed germination and seedling vigour. In 2011, soybean seed having 94% initial germination was stored at 8, 10 and 12% moisture levels but in 2012 seeds having 96% initial germination was stored at 6, 8, 10 and 12% initial moisture levels in four different types of storage containers viz., polythene bag, plastic pot, tin can and glass jar. weredays after storage ().The experiment was arranged in a factorial completely randomized design with three replications. In 2011, high germination of soybean seed (77-85%) was retained at 200 DAS for those stored at 8% initial seed moisture content (SMC) in any of the containers. Germination index and seedling dry matter decreased with increased initial seed moisture content irrespective of storage containers used. Tin preserved higher seed moisture contents of 9.93, 11.71 and 14.15% for seed stored at 8%, 10% and 12% initial seed moisture content, respectively. In 2012, 80-94% seed germination was retained at 200 DAS for those stored at 6% initial SMC in any of the containers. The germination declined to a range between 75.0 and 91.3% within 200 DAS at 8% initial SMC while those stored at 12% SMC showed rapid germination loss and the value showed down to between 9.3 and 22.0%. Vigour index and seedling dry matter decreased with increased initial seed moisture content irrespective of storage containers used. Tin also Seeds stored in tin container showed the higher final seed moisture contents irrespective of initial seed moisture content. Bangladesh Agron. J. 2018, 21(1): 131-141


Sign in / Sign up

Export Citation Format

Share Document