scholarly journals Measurement of stiffness and damping coefficient of rubber tractor tires using dynamic cleat test based on point contact model

Author(s):  
Hogil Yoo ◽  
◽  
Jooseon Oh ◽  
Woo-Jin Chung ◽  
Hyun-Woo Han ◽  
...  
2013 ◽  
Vol 397-400 ◽  
pp. 355-358
Author(s):  
Xia Qing Tang ◽  
Jun Qiang Gao ◽  
Li Bin Guo ◽  
Huan Zhang

Dynamics characteristics of SINS damping system in shock environment were analyzed by finite element method, as the deformation of dampers may leads to the accuracy loss of SINS. In addition, the influence of absorber stiffness and damping coefficient on dynamics characteristics were studied. The results indicate that the decoupling of vibrations is significant for the accuracy of SINS. However, considering the almost impossible of completely decoupled vibrations, its necessary to carry out an optimal design of the absorber stiffness and damping coefficient to maintain the accuracy of SINS while meeting the requirement of vibration isolation.


2020 ◽  
Vol 10 (22) ◽  
pp. 7953
Author(s):  
Lei Zhang ◽  
Xiangtao Zhuan

For improving the performance of an electromagnetic isolation system with reasonable parameters and avoid the parameter tuning problem of a PID controller, an active control method is put forward based on equivalent stiffness and damping coefficient. In this paper, the range of equivalent stiffness coefficient and damping coefficient of the electromagnetic force are calculated based on the required range of dynamic performance indexes. According to the nonlinear expression between electromagnetic force and coil current and gap, the relationships between the coil current and equivalent stiffness coefficient and damping coefficient are established. Then, the equivalent stiffness coefficient and damping coefficient can be satisfied by the controlled current in different gaps for meeting the required dynamic performance indexes. For reducing the maximum overshoot and the number of oscillations of the system, the active control method with the piecewise equivalent stiffness and damping coefficient is proposed based on the piecewise control strategy to realize the variable control parameters of the isolation system. Simulation and experimental results verify that the control method based on the equivalent stiffness and damping coefficient can obtain the desired dynamic performance indexes and the proposed control method with the piecewise strategy can not only reduce the setting time of the system, but also ensure the stability of the system.


Author(s):  
W. D. Zhu ◽  
G. Y. Xu

The effects of bending stiffness and boundary conditions on the lateral vibration of the stationary and moving hoist cables are investigated. The role of the trial functions in the approximate methods is examined. The optimal stiffness and damping coefficient of the suspension of the car against its guide rails are identified for the moving cable.


Author(s):  
Mingze Wang ◽  
Chengbiao Cai ◽  
Shengyang Zhu ◽  
Wanming Zhai

This paper presents an experimental study on dynamic performance of China Railway Track System (CRTS) series track systems using a full-scale test rig. The test rig has been constructed based on 55.17 m long full-scale nonballasted tracks composed of four typical CRTS track elements in high-speed railways. First, the dynamic characteristics of different nonballasted tracks are investigated by conducting wheel-drop tests, where a wheel-drop testing vehicle with a dropping wheelset is devised to provide the wheel-drop load. The vibration levels of different track systems are assessed by the root-mean-square acceleration per one-third octave band, and the vibration transmission characteristics of the CRTS series tracks are evaluated by transfer functions. Further, a mathematical track model is used to extract the dynamic stiffness and damping coefficient of the four types of nonballasted track systems based on the wheel–rail impact response. The vibration characteristics, the dynamic stiffness, and damping coefficient of different nonballasted track systems under various wheel-drop heights are compared and discussed in detail.


2016 ◽  
Vol 120 (10) ◽  
pp. 1230-1240 ◽  
Author(s):  
C. N. Gambelli ◽  
D. Theisen ◽  
P. A. Willems ◽  
B. Schepens

Landing from a jump implies proper positioning of the lower limb segments and the generation of an adequate muscular force to cope with the imminent collision with the ground. This study assesses how a hypogravitational environment affects the control of landing after a countermovement jump (CMJ). Eight participants performed submaximal CMJs on Earth (1- g condition) and in a weightlessness environment with simulated gravity conditions generated by a pull-down force (1-, 0.6-, 0.4-, and 0.2- g0 conditions). External forces applied to the body, movements of the lower limb segments, and muscular activity of six lower limb muscles were recorded. 1) All subjects were able to jump and stabilize their landing in all experimental conditions, except one subject in 0.2- g0 condition. 2) The mechanical behavior of lower limb muscles switches during landing from a stiff spring to a compliant spring associated with a damper. This is true whatever the environment, on Earth as well as in environments where sensory inputs are altered. 3) The motor control of landing in simulated 1 g0 reveals an increased “safety margin” strategy, illustrated by increased stiffness and damping coefficient compared with landing on Earth. 4) The motor command is adjusted to the task constraints: muscular activity of lower limb extensors and flexors, stiffness and damping coefficient decrease according to the decreased gravity level. Our results show that even if in daily living gravity can be perceived as a constant factor, subjects can cope with altered sensory signals, taking advantage of the remaining information (visual and/or decreased proprioceptive inputs).


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Wen-Bin Shangguan ◽  
Xiang-Kun Zeng

Experimental and modeling techniques for belt longitudinal static stiffness, longitudinal dynamic stiffness and damping coefficient, bending stiffness, and friction coefficient between a pulley and a belt are presented. Two methods for measuring longitudinal dynamic stiffness and damping coefficient of a belt are used, and the experimental results are compared. Experimental results show that the longitudinal dynamic stiffness of a belt is dependent on belt length, pretension, excitation amplitude and excitation frequency, and the damping coefficient of a belt is dependent on excitation frequency. Two models are presented to model the dependence of longitudinal dynamic stiffness and damping coefficient of a belt on belt length, pretension, excitation amplitude and excitation frequency. The proposed model is validated by comparing the estimated dynamic stiffness and damping with the experiment data. Also, the measurements of belt bending stiffness are carried out and the influences of the belt length on the belt bending stiffness are investigated. One test rig for measuring friction coefficient between a pulley and a belt are designed and fabricated, and the friction coefficient between the groove side belt with the groove side pulley, and the flat side belt with a flat pulley is measured with the test rig. The influences of wrap angle between pulley and belt, pretension of belt and rotational speed of the pulley on the friction coefficient are measured and analyzed. Taking an engine front end accessory drive system (FEAD) as the research example for the accessory drive system, experimental methods and the static and dynamic characteristics for the FEAD with seven pulleys, a tensioner, and a serpentine belt are presented.


Sign in / Sign up

Export Citation Format

Share Document