The Effect of Obesity on Triceps-surae Musculotendinous Stiffness and Damping Coefficient of Postmenopausal Women

2010 ◽  
Vol 42 ◽  
pp. 403-404
Author(s):  
Aurélio Faria ◽  
Ronaldo Gabriel ◽  
João Abrantes ◽  
Rui Brás ◽  
Helena Moreira
2013 ◽  
Vol 397-400 ◽  
pp. 355-358
Author(s):  
Xia Qing Tang ◽  
Jun Qiang Gao ◽  
Li Bin Guo ◽  
Huan Zhang

Dynamics characteristics of SINS damping system in shock environment were analyzed by finite element method, as the deformation of dampers may leads to the accuracy loss of SINS. In addition, the influence of absorber stiffness and damping coefficient on dynamics characteristics were studied. The results indicate that the decoupling of vibrations is significant for the accuracy of SINS. However, considering the almost impossible of completely decoupled vibrations, its necessary to carry out an optimal design of the absorber stiffness and damping coefficient to maintain the accuracy of SINS while meeting the requirement of vibration isolation.


2009 ◽  
Vol 24 (10) ◽  
pp. 866-871 ◽  
Author(s):  
Aurélio Faria ◽  
Ronaldo Gabriel ◽  
João Abrantes ◽  
Rui Brás ◽  
Helena Moreira

2020 ◽  
Vol 10 (22) ◽  
pp. 7953
Author(s):  
Lei Zhang ◽  
Xiangtao Zhuan

For improving the performance of an electromagnetic isolation system with reasonable parameters and avoid the parameter tuning problem of a PID controller, an active control method is put forward based on equivalent stiffness and damping coefficient. In this paper, the range of equivalent stiffness coefficient and damping coefficient of the electromagnetic force are calculated based on the required range of dynamic performance indexes. According to the nonlinear expression between electromagnetic force and coil current and gap, the relationships between the coil current and equivalent stiffness coefficient and damping coefficient are established. Then, the equivalent stiffness coefficient and damping coefficient can be satisfied by the controlled current in different gaps for meeting the required dynamic performance indexes. For reducing the maximum overshoot and the number of oscillations of the system, the active control method with the piecewise equivalent stiffness and damping coefficient is proposed based on the piecewise control strategy to realize the variable control parameters of the isolation system. Simulation and experimental results verify that the control method based on the equivalent stiffness and damping coefficient can obtain the desired dynamic performance indexes and the proposed control method with the piecewise strategy can not only reduce the setting time of the system, but also ensure the stability of the system.


Author(s):  
W. D. Zhu ◽  
G. Y. Xu

The effects of bending stiffness and boundary conditions on the lateral vibration of the stationary and moving hoist cables are investigated. The role of the trial functions in the approximate methods is examined. The optimal stiffness and damping coefficient of the suspension of the car against its guide rails are identified for the moving cable.


Author(s):  
Mingze Wang ◽  
Chengbiao Cai ◽  
Shengyang Zhu ◽  
Wanming Zhai

This paper presents an experimental study on dynamic performance of China Railway Track System (CRTS) series track systems using a full-scale test rig. The test rig has been constructed based on 55.17 m long full-scale nonballasted tracks composed of four typical CRTS track elements in high-speed railways. First, the dynamic characteristics of different nonballasted tracks are investigated by conducting wheel-drop tests, where a wheel-drop testing vehicle with a dropping wheelset is devised to provide the wheel-drop load. The vibration levels of different track systems are assessed by the root-mean-square acceleration per one-third octave band, and the vibration transmission characteristics of the CRTS series tracks are evaluated by transfer functions. Further, a mathematical track model is used to extract the dynamic stiffness and damping coefficient of the four types of nonballasted track systems based on the wheel–rail impact response. The vibration characteristics, the dynamic stiffness, and damping coefficient of different nonballasted track systems under various wheel-drop heights are compared and discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document