Mechanism and Prevention Method of Producing Hydrogen Sulfide in High Temperature Hydraulic Fracturing Well
Abstract For a successful hydraulic fracturing operation, shear recovery and thermal stability are critical in terms of successful fracture creation and proppant placement. Sodium thiosulfate is one of the most commonly used gel stabilizers in fracturing gel. This paper reported a well in sulfur-free gas reservoir produced hydrogen sulfide as much as 20000ppm after hydraulic fracturing operation. A series of experiments were carried out to reveal the mechanism of hydrogen sulfide production. Results showed that in solution with PH less than 6.5, when the temperature is higher than 119 degrees Celsius, sodium thiosulfate will react with hydrogen ions to generate hydrogen sulfide. In this complex reaction, there is also precipitation of elemental sulfur, which may block the pores of the reservoir and thence counteract the effect of hydraulic fracturing. The acidic solution in a fractured well is from (1) Spent acid left downhole due to pre-acid used to reduce fracturing pressure, and (2) Sulfuric acid produced by the decomposition of ammonium persulfate which is used as gel breaker at high temperature. This paper proposed two solutions to the problem of high-temperature fracturing fluids,one is to use a sulfur-free temperature stabilizer,and the other is to create a non-acid downhole environment. The opinions provided by this paper can help the operators reduce the risk of the damage of hydrogen sulfide and protect the integrity of the well of high temperature fracturing wells.