Development of Salt Tolerant Eucalyptus Globulus by Selection

2006 ◽  
Vol 60 (1) ◽  
pp. 69-74 ◽  
Author(s):  
Akira Murakami
2021 ◽  
Author(s):  
Andrew Praciak

Abstract Eucalyptus globulus varies from a multi-stemmed shrub on exposed sites to a very tall forest tree, 70-80 m tall, with a large open crown or a medium-sized woodland tree to 20 m. Although found mainly in Tasmania, it also occurs in southern Victoria. The wood is strong and moderately durable and is used for light and heavy construction and regarded as being excellent for cellulose and paper manufacture. It is slightly to moderately salt-tolerant (Marcar et al., 1995). Production from plantation-grown trees is mainly for pulpwood, but also for other timber products. It is an important plantation species in Australia and has experienced outstanding success as an exotic in many countries, with over 1 million ha of plantations established (Eldridge et al., 1993). The species is grown extensively on the Iberian Peninsula, Yunnan province in China and in Chile, for timber, pulp and oil production. The essential oil of E. globulus has dominated the market for cineole-rich oils since soon after the inception of the industry in 1852 (Doran and Saunders, 1993).


TAPPI Journal ◽  
2012 ◽  
Vol 11 (6) ◽  
pp. 31-38
Author(s):  
TATIANA M. PÓVOAS ◽  
DINA A.G. ANGÉLICO ◽  
ANA P.V. EGAS ◽  
PEDRO E.G. LOUREIRO ◽  
LICÍNIO M. GANDO-FERREIRA ◽  
...  

We conducted a comparative evaluation of different treatments for the bleaching of eucalypt kraft pulps beginning with OP stages. The treatments tested were (1) an acid chelation stage with DTPA (OQP sequence); (2) a hot acid stage (AOP sequence); and (3) a chelant addition into the alkaline oxygen stage ((OQ)P and A(OQ)P sequences). The latter strategy was also studied for environmental reasons, as it contributes to the closure of the filtrate cycle. The OQP sequence leads to the highest brightness gain and pulp viscosity and the lowest peroxide consumption caused by an efficient metals control. Considering that the low biodegradability of the chelant is a problem, the A(OQ)P sequence is an interesting option because it leads to reduced peroxide consumption (excluding OQP) while still reaching high brightness values and similar brightness reversion to OQP prebleaching, with only a viscosity loss of 160 dm3/kg. Therefore, a hot acid stage could be considered when a separate acid Q stage is absent in a prebleaching sequence of Eucalyptus globulus kraft pulps involving OP stages.


2013 ◽  
Vol 19 (2) ◽  
pp. 57-65
Author(s):  
MH Kabir ◽  
MM Islam ◽  
SN Begum ◽  
AC Manidas

A cross was made between high yielding salt susceptible BINA variety (Binadhan-5) with salt tolerant rice landrace (Harkuch) to identify salt tolerant rice lines. Thirty six F3 rice lines of Binadhan-5 x Harkuch were tested for salinity tolerance at the seedling stage in hydroponic system using nutrient solution. In F3 population, six lines were found as salt tolerant and 10 lines were moderately tolerant based on phenotypic screening at the seedling stage. Twelve SSR markers were used for parental survey and among them three polymorphic SSR markers viz., OSR34, RM443 and RM169 were selected to evaluate 26 F3 rice lines for salt tolerance. With respect to marker OSR34, 15 lines were identified as salt tolerant, 9 lines were susceptible and 2 lines were heterozygous. While RM443 identified 3 tolerant, 14 susceptible and 9 heterozygous rice lines. Eight tolerant, 11 susceptible and 7 heterozygous lines were identified with the marker RM169. Thus the tested markers could be efficiently used for tagging salt tolerant genes in marker-assisted breeding programme.DOI: http://dx.doi.org/10.3329/pa.v19i2.16929 Progress. Agric. 19(2): 57 - 65, 2008


HortScience ◽  
1997 ◽  
Vol 32 (2) ◽  
pp. 296-300 ◽  
Author(s):  
M.R. Foolad ◽  
G.Y. Lin

Seed of 42 wild accessions (Plant Introductions) of Lycopersicon pimpinellifolium Jusl., 11 cultigens (cultivated accessions) of L. esculentum Mill., and three control genotypes [LA716 (a salt-tolerant wild accession of L. pennellii Corr.), PI 174263 (a salt-tolerant cultigen), and UCT5 (a salt-sensitive breeding line)] were evaluated for germination in either 0 mm (control) or 100 mm synthetic sea salt (SSS, Na+/Ca2+ molar ratio equal to 5). Germination time increased in response to salt-stress in all genotypes, however, genotypic variation was observed. One accession of L. pimpinellifolium, LA1578, germinated as rapidly as LA716, and both germinated more rapidly than any other genotype under salt-stress. Ten accessions of L. pimpinellifolium germinated more rapidly than PI 174263 and 35 accessions germinated more rapidly than UCT5 under salt-stress. The results indicate a strong genetic potential for salt tolerance during germination within L. pimpinellifolium. Across genotypes, germination under salt-stress was positively correlated (r = 0.62, P < 0.01) with germination in the control treatment. The stability of germination response at diverse salt-stress levels was determined by evaluating germination of a subset of wild, cultivated accessions and the three control genotypes at 75, 150, and 200 mm SSS. Seeds that germinated rapidly at 75 mm also germinated rapidly at 150 mm salt. A strong correlation (r = 0.90, P < 0.01) existed between the speed of germination at these two salt-stress levels. At 200 mm salt, most accessions (76%) did not reach 50% germination by 38 days, demonstrating limited genetic potential within Lycopersicon for salt tolerance during germination at this high salinity.


Sign in / Sign up

Export Citation Format

Share Document