Effects of Overexpression of Wheat Superoxide Dismutase (SOD) Genes on Salt Tolerant Capability in Tobacco

2008 ◽  
Vol 34 (8) ◽  
pp. 1403-1408 ◽  
Author(s):  
Hai-Na ZHANG
BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Delong Wang ◽  
Xuke Lu ◽  
Xiugui Chen ◽  
Shuai Wang ◽  
Junjuan Wang ◽  
...  

Abstract Background Cotton (Gossypium hirsutum) is considered a fairly salt tolerant crop however, salinity can still cause significant economic losses by affecting the yield and deteriorating the fiber quality. We studied a salt-tolerant upland cotton cultivar under temporal salt stress to unfold the salt tolerance molecular mechanisms. Biochemical response to salt stress (400 mM) was measured at 0 h, 3 h, 12 h, 24 h and 48 h post stress intervals and single-molecule long-read sequencing technology from Pacific Biosciences (PacBio) combined with the unique molecular identifiers approach was used to identify differentially expressed genes (DEG). Results Antioxidant enzymes including, catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) were found significantly induced under temporal salt stress, suggesting that reactive oxygen species scavenging antioxidant machinery is an essential component of salt tolerance mechanism in cotton. We identified a wealth of novel transcripts based on the PacBio long reads sequencing approach. Prolonged salt stress duration induces high number of DEGs. Significant numbers of DEGs were found under key terms related to stress pathways such as “response to oxidative stress”, “response to salt stress”, “response to water deprivation”, “cation transport”, “metal ion transport”, “superoxide dismutase”, and “reductase”. Key DEGs related to hormone (abscisic acid, ethylene and jasmonic acid) biosynthesis, ion homeostasis (CBL-interacting serine/threonine-protein kinase genes, calcium-binding proteins, potassium transporter genes, potassium channel genes, sodium/hydrogen exchanger or antiporter genes), antioxidant activity (POD, SOD, CAT, glutathione reductase), transcription factors (myeloblastosis, WRKY, Apetala 2) and cell wall modification were found highly active in response to salt stress in cotton. Expression fold change of these DEGs showed both positive and negative responses, highlighting the complex nature of salt stress tolerance mechanisms in cotton. Conclusion Collectively, this study provides a good insight into the regulatory mechanism under salt stress in cotton and lays the foundation for further improvement of salt stress tolerance.


2005 ◽  
Vol 17 (4) ◽  
pp. 353-362 ◽  
Author(s):  
Paulo Henrique Alves da Costa ◽  
André Dias de Azevedo Neto ◽  
Marlos Alves Bezerra ◽  
José Tarquinio Prisco ◽  
Enéas Gomes-Filho

Two forage sorghum genotypes were studied: CSF18 (salt-sensitive) and CSF20 (salt-tolerant). Shoot growth reduction as a result of salt stress was stronger in the salt sensitive genotype compared to the salt tolerant one. When the two genotypes were subjected to salt stress (75 mM NaCl) no significant change in lipid peroxidation was observed. However, salt stress induced increases in superoxide dismutase and catalase activities in both genotypes. These salt-induced increases were higher in the salt-tolerant genotype. Peroxidase activity was differentially affected by salt stress in the two genotypes. The activities of these peroxidases were decreased by salt stress in the salt-sensitive genotype and increased in the salt-tolerant genotype. In addition, the activity ratio between the superoxide dismutase and the H2O2-scavenging enzymes was higher in the salt-sensitive genotype. The results obtained support the hypothesis that the higher efficiency of the antioxidant-enzymatic system of the CSF20 genotype could be considered as one of the factors responsible for its tolerance to salt stress. Therefore, it is suggested that the ratio between superoxide dismutase and H2O2-scavenging enzyme activities could be used as a working hypothesis for a biochemical marker for salt tolerance in sorghum.


2014 ◽  
Vol 69 (5-6) ◽  
pp. 226-236 ◽  
Author(s):  
Renlei Wang ◽  
Shaohua Liu ◽  
Feng Zhou ◽  
Chunxia Ding

The effects of exogenous ascorbic acid (AsA) and reduced glutathione (GSH) on antioxidant enzyme activities [superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR)] and the contents of malondialdehyde (MDA) and H2O2, as well as of endogenous AsA and GSH, in the chloroplasts of two rice cultivars, the salt-tolerant cultivar Pokkali and the salt-sensitive cultivar Peta, were investigated. Exogenous AsA and GSH enhanced SOD, APX, and GR activities, increased endogenous AsA and GSH contents, and reduced those of H2O2 and MDA in the chloroplasts of both cultivars under salt stress (200 mM NaCl), but the effects were significantly more pronounced in cv. Pokkali. GSH acted more strongly than AsA on the plastidial reactive oxygen scavenging systems. These results indicated that exogenous AsA and GSH differentially enhanced salinity tolerance and alleviated salinity-induced damage in the two rice cultivars


1994 ◽  
Vol 90 (2) ◽  
pp. 339-347 ◽  
Author(s):  
Maria S. Almansa ◽  
Luis A. del Rio ◽  
Francisca Sevilla

Sign in / Sign up

Export Citation Format

Share Document