scholarly journals Real-Time NDVI Measurement Using a Low-Cost Panchromatic Sensor for a Mobile Robot Platform

2010 ◽  
Vol 48 (2) ◽  
pp. 73-79 ◽  
Author(s):  
Bin ZHAO ◽  
Lei TIAN ◽  
Tofael AHAMED
Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2886 ◽  
Author(s):  
Junwoo Lee ◽  
Bummo Ahn

Human action recognition is an important research area in the field of computer vision that can be applied in surveillance, assisted living, and robotic systems interacting with people. Although various approaches have been widely used, recent studies have mainly focused on deep-learning networks using Kinect camera that can easily generate data on skeleton joints using depth data, and have achieved satisfactory performances. However, their models are deep and complex to achieve a higher recognition score; therefore, they cannot be applied to a mobile robot platform using a Kinect camera. To overcome these limitations, we suggest a method to classify human actions in real-time using a single RGB camera, which can be applied to the mobile robot platform as well. We integrated two open-source libraries, i.e., OpenPose and 3D-baseline, to extract skeleton joints on RGB images, and classified the actions using convolutional neural networks. Finally, we set up the mobile robot platform including an NVIDIA JETSON XAVIER embedded board and tracking algorithm to monitor a person continuously. We achieved an accuracy of 70% on the NTU-RGBD training dataset, and the whole process was performed on an average of 15 frames per second (FPS) on an embedded board system.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 858 ◽  
Author(s):  
Timothy A. Vincent ◽  
Yuxin Xing ◽  
Marina Cole ◽  
Julian W. Gardner

A new signal processing technique has been developed for resistive metal oxide (MOX) gas sensors to enable high-bandwidth measurements and enhanced selectivity at PPM levels (<50 PPM VOCs). An embedded micro-heater is thermally pulsed from 225 to 350 °C, which enables the chemical reactions in the sensor film (e.g., SnO2, WO3, NiO) to be extracted using a fast Fourier transform. Signal processing is performed in real-time using a low-cost microcontroller integrated into a sensor module. The approach enables the remove of baseline drift and is resilient to environmental temperature changes. Bench-top experimental results are presented for 50 to 200 ppm of ethanol and CO, which demonstrate our sensor system can be used within a mobile robot.


2017 ◽  
Vol 2017 (9) ◽  
pp. 10-15 ◽  
Author(s):  
Soonhac Hong ◽  
Ming Li ◽  
Miao Liao ◽  
Peter van Beek

2013 ◽  
Vol 418 ◽  
pp. 20-24
Author(s):  
Yu Zhen Yang ◽  
Chang Sheng Ai ◽  
Kevin Lee

In order to complete the complex operation in the dangerous environment and improve the efficiency and accuracy of industrial production. WiFi based remote control system platform is composed by the controlled mobile robot and control terminal such as PC. They communicate with each other through wireless network. The mobile robot constructs of four wheel drive. Microcontroller, sensor, wireless routing module, serial server and network camera are in the robot. Control terminal includes PC, control handle and other equipments. Using a proven and reliable wireless bridge, each network device can realize network communication with others. Based on the TCP/IP protocol, using socket programming technology, data communication can be achieved. Video capture uses the network camera. Through the test of the platform, bilateral operation with real-time haptic and video feedback are achieved. At the same time according to the real-time environmental information feedback, control terminal realizes the effective remote monitoring in the controlled end.


2009 ◽  
Vol 62-64 ◽  
pp. 181-186 ◽  
Author(s):  
Hasitha M. B. Senanayake ◽  
Olaitan Akinsanmi ◽  
Muhammed Bashir Mu’azu

Autonomous Vehicular Navigation poses interesting challenges and, Automatically Guided Vehicle (AGV) Path Tracking presents an important notion in real-time Mechatronics applications. This paper describes the design of a Path Tracking Automatically Guided Vehicle that is capable of autonomously navigating a predefined path on a level navigating plane and, the designed AGV successfully completed a 3.42 meter test course in precisely 2 minutes 16 seconds. The AGV comprises a PIC16F84A microcontroller utilized as an embedded controller and, an array of Infrared reflective optical sensors to enable path detection and tracking. Among the primary objectives of the design that were achieved was to design the low-cost mobile robot from component parts sourced locally, from within Nigeria.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 317 ◽  
Author(s):  
Raimarius Delgado ◽  
Byoung Choi

This paper proposes a real-time embedded system for joint space control of omnidirectional mobile robots. Actuators driving an omnidirectional mobile robot are connected in a line topology which requires synchronization to move simultaneously in translation and rotation. We employ EtherCAT, a real-time Ethernet network, to control servo controllers for the mobile robot. The first part of this study focuses on the design of a low-cost embedded system utilizing an open-source EtherCAT master. Although satisfying real-time constraints is critical, a desired trajectory on the center of the mobile robot should be decomposed into the joint space to drive the servo controllers. For the center of the robot, a convolution-based path planner and a corresponding joint space control algorithm are presented considering its physical limits. To avoid obstacles that introduce geometric constraints on the curved path, a trajectory generation algorithm considering high curvature turning points is adapted for an omnidirectional mobile robot. Tracking a high curvature path increases mathematical complexity, which requires precise synchronization between the actuators of the mobile robot. An improvement of the distributed clock—the synchronization mechanism of EtherCAT for slaves—is presented and applied to the joint controllers of the mobile robot. The local time of the EtherCAT master is dynamically adjusted according to the drift of the reference slave, which minimizes the synchronization error between each joint. Experiments are conducted on our own developed four-wheeled omnidirectional mobile robot. The experiment results confirm that the proposed system is very effective in real-time control applications for precise motion control of the robot even for tracking high curvature paths.


Sign in / Sign up

Export Citation Format

Share Document