Influence of threonine intake on whole-body protein deposition and threonine utilization in growing pigs fed purified diets.

2001 ◽  
Vol 79 (12) ◽  
pp. 3087 ◽  
Author(s):  
C F de Lange ◽  
A M Gillis ◽  
G J Simpson
2000 ◽  
Vol 278 (3) ◽  
pp. E477-E483 ◽  
Author(s):  
Rhonda C. Vann ◽  
Hanh V. Nguyen ◽  
Peter J. Reeds ◽  
Douglas G. Burrin ◽  
Marta L. Fiorotto ◽  
...  

Somatotropin (ST) administration enhances protein deposition in well-nourished, growing animals. To determine whether the anabolic effect is due to an increase in protein synthesis or a decrease in proteolysis, pair-fed, weight-matched (∼20 kg) growing swine were treated with porcine ST (150 μg ⋅ kg− 1 ⋅ day− 1, n = 6) or diluent ( n = 6) for 7 days. Whole body leucine appearance (Ra), nonoxidative leucine disposal (NOLD), urea production, and leucine oxidation, as well as tissue protein synthesis (Ks), were determined in the fed steady state using primed continuous infusions of [13C]leucine, [13C]bicarbonate, and [15N2]urea. ST treatment increased the efficiency with which the diet was used for growth. ST treatment also increased plasma insulin-like growth factor I (+100%) and insulin (+125%) concentrations and decreased plasma urea nitrogen concentrations (−53%). ST-treated pigs had lower leucine Ra (−33%), leucine oxidation (−63%), and urea production (−70%). However, ST treatment altered neither NOLD nor Ks in the longissimus dorsi, semitendinosus, or gastrocnemius muscles, liver, or jejunum. The results suggest that in the fed state, ST treatment of growing swine increases protein deposition primarily through a suppression of protein degradation and amino acid catabolism rather than a stimulation of protein synthesis.


2020 ◽  
Vol 175 ◽  
pp. 03008
Author(s):  
Olga Obvintseva ◽  
Kenes Erimbetov ◽  
Vitaly Mikhailov

One of the approaches to creating biologically active additives for use in pig breeding can be the use of 20-hydroxyecdysone regulating protein metabolism in piglets. The purpose of the work is to assess the effect of 20-hydroxyecdysone on turnover of protein in piglets. The experiment was carried out on barrows (♂ Danish Yorkshire × ♀ Danish landrace) to achieve a live weight of 53-62 kg. At the age of 60 days, 2 groups of piglets were formed: control and experimental. Piglets of the experimental group were injected with 20-hydroxyecdysone at a dose of 1.6 mg / kg body weight. In piglets of the experimental group, in comparison with the control, a decrease in the excretion of nitrogen in the urine was noted (by 26.8%, P <0.05). Nitrogen deposition was higher in piglets of the experimental group by 19.0% (P <0.001) compared with the control. 20-hydroxyecdysone contributed to increased protein deposition in the body of piglets due to protein synthesizing activity. Thus, the use of 20-hydroxyecdysone in pigs increases the efficiency of using amino acids for the synthesis and deposition of proteins in the body.


Animals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 323 ◽  
Author(s):  
Whitney D. McGilvray ◽  
Bradley Johnson ◽  
Hailey Wooten ◽  
Amanda R. Rakhshandeh ◽  
Anoosh Rakhshandeh

The effects of immune system stimulation (ISS), induced by repeated injection of Escherichia coli lipopolysaccharide, on the whole-body protein synthesis versus degradation rates, the efficiency of protein deposition (PD), and muscle fiber characteristics in pigs were evaluated. Twelve growing gilts were assigned to two levels of amino acid intake that was predicted based on the potential of each group’s health status for PD and feed intake. Isotope tracer, nitrogen balance, and immunohistochemical staining techniques were used to determine protein turnover, PD, and muscle fiber characteristics, respectively. Protein synthesis, degradation, and PD were lower in immune-challenged pigs than in control pigs (p < 0.05). Strong tendencies for a higher protein synthesis-to-PD ratio (p = 0.055) and a lower protein synthesis-to-degradation ratio (p = 0.065) were observed in immune-challenged pigs. A decrease in muscle cross-sectional area of fibers and a shift from myosin heavy chain (MHC)-II towards MHC-I fibers (p < 0.05) were observed in immune-challenged pigs. These results indicated that ISS reduces PD not only by suppressing the whole-body protein synthesis and degradation rates, but also by decreasing the efficiency of PD in growing pigs. In addition, ISS induces atrophy in skeletal muscles and favors a slow-twitch oxidative fiber type composition.


2013 ◽  
Vol 111 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Anoosh Rakhshandeh ◽  
John K. Htoo ◽  
Neil Karrow ◽  
Stephen P. Miller ◽  
Cornelis F. M. de Lange

The impact of immune system stimulation (ISS) on the ileal nutrient digestibility and utilisation of dietary methionine plus cysteine (SAA) intake for whole-body protein deposition (PD) was evaluated in growing pigs. For this purpose, sixty barrows were used in two experiments: thirty-six pigs in Expt I and twenty-four pigs in Expt II. Pigs were feed restricted and assigned to five levels of dietary SAA allowance (three and two levels in Expt I and II, respectively) from SAA-limiting diets. Following adaptation, pigs at each dietary SAA level were injected with either increasing amounts ofEscherichia colilipopolysaccharide (ISS+; eight and six pigs per dietary SAA level in Expt I and II, respectively) or saline (ISS − ; four and six pigs in Expt I and II, respectively) while measuring the whole-body nitrogen (N) balance. After N-balance observations, pigs were euthanised, organs were removed and ileal digesta were collected for determining nutrient digestibility. Ileal digestibility of gross energy, crude protein and amino acids was not affected by ISS (P>0·20). ISS reduced PD at all levels of dietary SAA intake (P< 0·01). The linear relationship between daily dietary SAA intake and PD observed at the three lowest dietary SAA intake levels indicated that ISS increased extrapolated maintenance SAA requirements (P< 0·05), but had no effect on the partial efficiency of the utilisation of dietary SAA intake for PD (P>0·20). Physiological and metabolic changes associated with systemic ISS had no effect on the ileal digestibility of nutrientsper se, but altered SAA requirements for PD in growing pigs.


2000 ◽  
Vol 279 (1) ◽  
pp. E1-E10 ◽  
Author(s):  
Rhonda C. Vann ◽  
Hanh V. Nguyen ◽  
Peter J. Reeds ◽  
Norman C. Steele ◽  
Daniel R. Deaver ◽  
...  

Somatotropin (ST) administration enhances protein deposition and elicits profound metabolic responses, including hyperinsulinemia. To determine whether the anabolic effect of ST is due to hyperinsulinemia, pair-fed weight-matched growing swine were treated with porcine ST (150 μg · kg body wt−1 · day−1) or diluent for 7 days ( n = 6/group, ∼20 kg). Then pancreatic glucose-amino acid clamps were performed after an overnight fast. The objective was to reproduce the insulin levels of 1) fasted control and ST pigs (basal insulin, 5 μU/ml), 2) fed control pigs (low insulin, 20 μU/ml), and 3) fed ST pigs (high insulin, 50 μU/ml). Amino acid and glucose disposal rates were determined from the infusion rates necessary to maintain preclamp blood levels of these substrates. Whole body nonoxidative leucine disposal (NOLD), leucine appearance (Ra), and leucine oxidation were determined with primed, continuous infusions of [13C]leucine and [14C]bicarbonate. ST treatment was associated with higher NOLD and protein balance and lower leucine oxidation and amino acid and glucose disposals. Insulin lowered Ra and increased leucine oxidation, protein balance, and amino acid and glucose disposals. These effects of insulin were suppressed by ST treatment; however, the protein balance remained higher in ST pigs. The results show that ST treatment inhibits insulin's effects on protein metabolism and indicate that the stimulation of protein deposition by ST treatment is not mediated by insulin. Comparison of the protein metabolic responses to ST treatment during the basal fasting period with those in the fully fed state from a previous study suggests that the mechanism by which ST treatment enhances protein deposition is influenced by feeding status.


2020 ◽  
Vol 100 (2) ◽  
pp. 368-380
Author(s):  
Adam D. Totafurno ◽  
Lee-Anne Huber ◽  
Wilfredo D. Mansilla ◽  
Cornelis F.M. de Lange ◽  
Ira B. Mandell

Two hundred and forty weaned pigs [initial body weight (BW) 7.2 ± 0.07 kg] were allocated to three diets (eight pens per treatment, 10 pigs per pen) to determine the effects of a temporary lysine (Lys) restriction on subsequent growth, body composition, as well as carcass and loin quality at slaughter. For a 3 wk restriction period, pigs were fed diets that were 110% (control), 20% (Lys20), or 40% (Lys40) below estimated Lys requirements. Thereafter, all pigs were fed a common grower diet containing 120% of the estimated Lys requirement for 6 wk (recovery period) and commercial diets until slaughter at ∼125 kg BW. During the restriction period, average daily gain, gain-to-feed ratio, and whole body protein deposition decreased (linear; P < 0.01), while whole body lipid deposition increased (linear; P < 0.001) with decreased dietary Lys concentrations. At the end of the recovery period, there were no differences in BW, although whole body protein concentration tended to decrease and lipid concentration tended to increase (linear; P = 0.07 and 0.06, respectively) with decreased dietary Lys concentrations. At ∼125 kg, there were no differences in BW, chemical composition, or carcass and loin quality. Compensatory growth was achieved by ∼125 kg BW after a 3 wk Lys restriction for newly weaned pigs without negatively impacting carcass and loin quality.


2007 ◽  
Vol 6 (sup1) ◽  
pp. 357-359
Author(s):  
S. Schiavon ◽  
C. Ceolin ◽  
F. Tagliapietra ◽  
L. Bailoni ◽  
A. Piva
Keyword(s):  

2000 ◽  
Vol 70 (1) ◽  
pp. 29-37 ◽  
Author(s):  
P. W. Knap ◽  
H. Jørgensen

AbstractBody composition in the pig, and its variation, is mostly referred to in terms of body protein and lipid content of the whole body. This study was made to check for animal-intrinsic variation in the partitioning of body protein into protein pools and of body lipid into lipid depots. Results from serial slaughter trials on 316 Danish Landrace and 76 Danish Yorkshire pigs were used to estimate additive genetic and litter-associated variance components for several traits. These traits were total body protein and lipid mass (TOTPROT and TOTLIPD), the proportions of total body protein that are present in the muscles (PROTMUS) or in the (sub-)cutaneous tissue plus bones (connective tissue protein, PROTCON), and the proportions of total body lipid that are present in the (sub-)cutaneous tissue (LIPDSUB), in the muscles (inter- and intramuscular fat, LIPDMUS), or in the bones (LIPDBON). TOTPROT and TOTLIPD were adjusted by regression for body weight; PROTMUS and PROTCON were adjusted for PROTCON, and LIPDSUB, LIPDMUS and LIPDBON were adjusted for TOTLIPD. The pooled estimates (± s.e.) of the degree of genetic determination (the sum of the additive genetic and litter-associated variance components, which approximates the repeatability) of these traits were 0·48 ± 0·19 for TOTPROT, 0·56 ± 0·20 for TOTLIPD, 0·56 ± 0·12 for PROTMUS, 0·57 ± 0·15 for PROTCON, 0·32 ± 0·10 for LIPDMUS, 0·33 ± 0·12 for LIPDSUB, and 0·22 ± 0·10 for LIPDBON. It is concluded that there is animal-intrinsic variation in partitioning of body protein and lipid.


Sign in / Sign up

Export Citation Format

Share Document