scholarly journals Immune System Stimulation Reduces the Efficiency of Whole-Body Protein Deposition and Alters Muscle Fiber Characteristics in Growing Pigs

Animals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 323 ◽  
Author(s):  
Whitney D. McGilvray ◽  
Bradley Johnson ◽  
Hailey Wooten ◽  
Amanda R. Rakhshandeh ◽  
Anoosh Rakhshandeh

The effects of immune system stimulation (ISS), induced by repeated injection of Escherichia coli lipopolysaccharide, on the whole-body protein synthesis versus degradation rates, the efficiency of protein deposition (PD), and muscle fiber characteristics in pigs were evaluated. Twelve growing gilts were assigned to two levels of amino acid intake that was predicted based on the potential of each group’s health status for PD and feed intake. Isotope tracer, nitrogen balance, and immunohistochemical staining techniques were used to determine protein turnover, PD, and muscle fiber characteristics, respectively. Protein synthesis, degradation, and PD were lower in immune-challenged pigs than in control pigs (p < 0.05). Strong tendencies for a higher protein synthesis-to-PD ratio (p = 0.055) and a lower protein synthesis-to-degradation ratio (p = 0.065) were observed in immune-challenged pigs. A decrease in muscle cross-sectional area of fibers and a shift from myosin heavy chain (MHC)-II towards MHC-I fibers (p < 0.05) were observed in immune-challenged pigs. These results indicated that ISS reduces PD not only by suppressing the whole-body protein synthesis and degradation rates, but also by decreasing the efficiency of PD in growing pigs. In addition, ISS induces atrophy in skeletal muscles and favors a slow-twitch oxidative fiber type composition.

2000 ◽  
Vol 278 (3) ◽  
pp. E477-E483 ◽  
Author(s):  
Rhonda C. Vann ◽  
Hanh V. Nguyen ◽  
Peter J. Reeds ◽  
Douglas G. Burrin ◽  
Marta L. Fiorotto ◽  
...  

Somatotropin (ST) administration enhances protein deposition in well-nourished, growing animals. To determine whether the anabolic effect is due to an increase in protein synthesis or a decrease in proteolysis, pair-fed, weight-matched (∼20 kg) growing swine were treated with porcine ST (150 μg ⋅ kg− 1 ⋅ day− 1, n = 6) or diluent ( n = 6) for 7 days. Whole body leucine appearance (Ra), nonoxidative leucine disposal (NOLD), urea production, and leucine oxidation, as well as tissue protein synthesis (Ks), were determined in the fed steady state using primed continuous infusions of [13C]leucine, [13C]bicarbonate, and [15N2]urea. ST treatment increased the efficiency with which the diet was used for growth. ST treatment also increased plasma insulin-like growth factor I (+100%) and insulin (+125%) concentrations and decreased plasma urea nitrogen concentrations (−53%). ST-treated pigs had lower leucine Ra (−33%), leucine oxidation (−63%), and urea production (−70%). However, ST treatment altered neither NOLD nor Ks in the longissimus dorsi, semitendinosus, or gastrocnemius muscles, liver, or jejunum. The results suggest that in the fed state, ST treatment of growing swine increases protein deposition primarily through a suppression of protein degradation and amino acid catabolism rather than a stimulation of protein synthesis.


2013 ◽  
Vol 111 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Anoosh Rakhshandeh ◽  
John K. Htoo ◽  
Neil Karrow ◽  
Stephen P. Miller ◽  
Cornelis F. M. de Lange

The impact of immune system stimulation (ISS) on the ileal nutrient digestibility and utilisation of dietary methionine plus cysteine (SAA) intake for whole-body protein deposition (PD) was evaluated in growing pigs. For this purpose, sixty barrows were used in two experiments: thirty-six pigs in Expt I and twenty-four pigs in Expt II. Pigs were feed restricted and assigned to five levels of dietary SAA allowance (three and two levels in Expt I and II, respectively) from SAA-limiting diets. Following adaptation, pigs at each dietary SAA level were injected with either increasing amounts ofEscherichia colilipopolysaccharide (ISS+; eight and six pigs per dietary SAA level in Expt I and II, respectively) or saline (ISS − ; four and six pigs in Expt I and II, respectively) while measuring the whole-body nitrogen (N) balance. After N-balance observations, pigs were euthanised, organs were removed and ileal digesta were collected for determining nutrient digestibility. Ileal digestibility of gross energy, crude protein and amino acids was not affected by ISS (P>0·20). ISS reduced PD at all levels of dietary SAA intake (P< 0·01). The linear relationship between daily dietary SAA intake and PD observed at the three lowest dietary SAA intake levels indicated that ISS increased extrapolated maintenance SAA requirements (P< 0·05), but had no effect on the partial efficiency of the utilisation of dietary SAA intake for PD (P>0·20). Physiological and metabolic changes associated with systemic ISS had no effect on the ileal digestibility of nutrientsper se, but altered SAA requirements for PD in growing pigs.


1987 ◽  
Vol 57 (2) ◽  
pp. 269-277 ◽  
Author(s):  
T. Muramatsu ◽  
Y. Aoyagi ◽  
J. Okumura ◽  
I. Tasaki

1. The effect of starvation on whole-body protein synthesis and on the contribution of protein synthesis to basal metabolic rate was investigated in young chickens (Expt 1). Strain differences between layer and broiler chickens in whole-body protein synthesis and degradation rates were examined when the birds were starved (Expt 2).2. In Expt 1, 15-d-old White Leghorn male chickens were used, while in Expt 2 Hubbard (broiler) and White Leghorn (layer) male chickens at 14 d of age were used. They were starved for 4 d, and heat production was determined by carcass analysis after 2 and 4 d of starvation. Whole-body protein synthesis rates were measured on 0, 2 and 4 d of starvation (Expt 1), and on 0 and 4 d of starvation (Expt 2).3. The results showed that starving reduced whole-body protein synthesis in terms of fractional synthesis rate and the amount synthesized. Whole-body protein degradation was increased by starvation both in terms of fractional synthesis rate and the amount degraded on a per kg body-weight basis.4. Reduced fractional synthesis rate of protein in the whole body was accounted for by reductions in both protein synthesis per unit RNA and RNA:protein ratio.5. In the fed state, whole-body protein synthesis and degradation rates, whether expressed as fractional rates or amounts per unit body-weight, tended to be higher in layer than in broiler chickens. In the starved state, the difference in the rate of protein synthesis between the two strains virtually disappeared, while the degradation rates were higher in layer than in broiler birds.6. Based on the assumed value of 3.56 kJ/g protein synthesized (Waterlow et al. 1978), the heat associated with whole-body protein synthesis in the starved state was calculated to range from 14 to 17% of the basal metabolic rate with no strain difference between layer and broiler chickens.


2020 ◽  
Vol 175 ◽  
pp. 03008
Author(s):  
Olga Obvintseva ◽  
Kenes Erimbetov ◽  
Vitaly Mikhailov

One of the approaches to creating biologically active additives for use in pig breeding can be the use of 20-hydroxyecdysone regulating protein metabolism in piglets. The purpose of the work is to assess the effect of 20-hydroxyecdysone on turnover of protein in piglets. The experiment was carried out on barrows (♂ Danish Yorkshire × ♀ Danish landrace) to achieve a live weight of 53-62 kg. At the age of 60 days, 2 groups of piglets were formed: control and experimental. Piglets of the experimental group were injected with 20-hydroxyecdysone at a dose of 1.6 mg / kg body weight. In piglets of the experimental group, in comparison with the control, a decrease in the excretion of nitrogen in the urine was noted (by 26.8%, P <0.05). Nitrogen deposition was higher in piglets of the experimental group by 19.0% (P <0.001) compared with the control. 20-hydroxyecdysone contributed to increased protein deposition in the body of piglets due to protein synthesizing activity. Thus, the use of 20-hydroxyecdysone in pigs increases the efficiency of using amino acids for the synthesis and deposition of proteins in the body.


1982 ◽  
Vol 204 (2) ◽  
pp. 393-398 ◽  
Author(s):  
P J Reeds ◽  
P Haggarty ◽  
K W J Wahle ◽  
J M Fletcher

The rates of protein synthesis in skeletal muscle, intestine, liver and in the whole body of immature (18 and 25 days old) lean and obese male Zucker rats were measured. In addition, the rate of deposition of whole-body and skeletal-muscle protein over the period 16-27 days post partum was measured by comparative slaughter and analysis of the composition of the body. At 16 days post partum, lean and obese rats had similar body protein contents, but thereafter the rate of protein deposition in the body and skeletal-muscle mass was decreased in the obese rats. The decrease was particularly marked before 21 days of age, and between 23 and 27 days post partum the fractional rate of protein deposition was the same in lean and obese rats. Of the tissues that were studied, only skeletal muscle had a lower fractional rate of protein synthesis in the obese rats. At 18 days post partum, the decrease in the absolute rate of protein synthesis in skeletal muscle accounted for at least 80% of the decline in protein synthesis in the whole body. After weaning, phenotypic differences in protein synthesis was less marked than at 18 days of age, and skeletal muscle accounted for only 50% of the difference in body protein synthesis between phenotypes. The possibility that a change in the function of the adrenal cortex contributes to differences in protein metabolism between lean and obese Zucker rats is discussed.


1990 ◽  
Vol 63 (3) ◽  
pp. 503-513 ◽  
Author(s):  
D. N. Salter ◽  
A. I. Montgomery ◽  
Anna Hudson ◽  
D. B. Quelch ◽  
Rosemary J. Elliott

The influence on protein accretion and whole-body protein turnover of changing dietary protein quality while maintaining constant energy intake was studied by varying the degree of lysine supplementation of a lysine-deficient barley-based diet given to growing pigs. Measurements of nitrogen metabolism and whole-body protein turnover, using both classical and 15N end-product methods following a single dose of lsqb;15N]glycine, were made in 49-kg male pigs given diets containing 109 g lysine-deficient protein/kg supplemented to make them (1) 'deficient', (2) 'adequate' and (3) 'in excess' with respect to lysine. The 15N dose and protein intake values used to calculate amino N flux from the cumulative urinary excretion of 15N in urea and ammonia were corrected respectively for apparent digestibilities of [15N]glycine and total N determined in a separate experiment in pigs fitted with simple ileal cannulas. N retention and biological value were significantly increased by lysine supplementation of the deficient diet to the 'adequate' level, but were not further increased by the higher level of supplementation. Rates of growth paralleled these changes. The poorer biological value of the unsupplemented diet 1 was shown also in a significantly higher excretion of urea N compared with diets 2 and 3. N digestibility was not markedly influenced by the level of lysine supplementation. Both whole-body protein synthesis and degradation increased markedly on 'adequate' supplementation of the diet with lysine, but did not increase further with an excess of lysine. It is concluded that the increase in protein accretion rate observed on supplementation of the diet with lysine was due to a greater increase in the rate of protein synthesis than of degradation, rather than a decrease in degradation rate.


1988 ◽  
Vol 254 (2) ◽  
pp. E208-E213 ◽  
Author(s):  
K. S. Nair ◽  
D. Halliday ◽  
R. C. Griggs

Fractional mixed skeletal muscle protein synthesis (FMPS) was estimated in 10 postabsorptive healthy men by determining the increment in the abundance of [13C]-leucine in quadriceps muscle protein during an intravenous infusion of L-[1-13C]leucine. FMPS in our subjects was 0.046 +/- 0.003%/h. Whole-body muscle protein synthesis (MPS) was calculated based on the estimation of muscle mass from creatinine excretion and compared with whole-body protein synthesis (WBPS) calculated from the nonoxidative portion of leucine flux. A significant correlation (r2 = 0.73, P less than 0.05) was found between MPS (44.7 +/- 3.4 mg.kg-1.h-1) and WBPS (167.8 +/- 8.5 mg.kg-1.h-1). The contribution of MPS to WBPS was 27 +/- 1%, which is comparable to the reports in other species. Morphometric analyses of adjacent muscle samples in eight subjects demonstrated that the biopsy specimens consisted of 86.5 +/- 2% muscular as opposed to other tissues. Because fiber type composition varies between biopsies, we examined the relationship between proportions of each fiber type and FMPS. Variation in the composition of biopsies and in fiber-type proportion did not affect the estimation of muscle protein synthesis rate. We conclude that stable isotope techniques using serial needle biopsies permit the direct measurement of FMPS in humans and that this estimation is correlated with an indirect estimation of WBPS.


Sign in / Sign up

Export Citation Format

Share Document