The Hydrological Comparisions Between The Chalk Aquifer and The Holderness Glacial Till of Small Catchwater Drain Catchment in Holderness, England

2014 ◽  
Vol 2 (2) ◽  
pp. 342-357
Author(s):  
Ramadhan Zaidky
Keyword(s):  
1981 ◽  
Vol 27 (97) ◽  
pp. 503-505 ◽  
Author(s):  
Ian J. Smalley

AbstractRecent investigations have shown that various factors may affect the shear strength of glacial till and that these factors may be involved in the drumlin-forming process. The presence of frozen till in the deforming zone, variation in pore-water pressure in the till, and the occurrence of random patches of dense stony-till texture have been considered. The occurrence of dense stony till may relate to the dilatancy hypothesis and can be considered a likely drumlin-forming factor within the region of critical stress levels. The up-glacier stress level now appears to be the more important, and to provide a sharper division between drumlin-forming and non-drumlin-forming conditions.


2012 ◽  
Vol 107 ◽  
pp. 1-12 ◽  
Author(s):  
Stephen D. Merrill ◽  
Donald L. Tanaka ◽  
Mark A. Liebig ◽  
Joseph M. Krupinsky ◽  
Jonathan D. Hanson ◽  
...  

Author(s):  
W. George Darling ◽  
Melinda A. Lewis

The Lower Greensand (LGS) forms the second most important aquifer in the London Basin but, being largely absent beneath the city itself, has received much less attention than the ubiquitous overlying Chalk aquifer. While the general directions of groundwater flow in the Chalk are well established, there has been much less certainty about flow in the LGS owing to regionally sparse borehole information. This study focuses on two hitherto uncertain aspects of the confined aquifer: the sources of recharge to the west-central London Basin around Slough, and the fate of LGS water where the aquifer thins out on the flank of the London Platform in the Gravesend–Medway–Sheppey area on the southern side of the basin. The application of hydrogeochemical techniques including environmental isotopes indicates that recharge to the Slough area is derived from the northern LGS outcrop, probably supplemented by downward leakage from the Chalk, while upward leakage from the LGS in North Kent is mixing with Chalk water to the extent that some Chalk boreholes on the Isle of Sheppey are abstracting high proportions of water with an LGS fingerprint. In doing so, this study demonstrates the value of re-examining previously published data from a fresh perspective.Thematic collection: This article is part of the Hydrogeology of Sandstone collection available at: https://www.lyellcollection.org/cc/hydrogeology-of-sandstone


2012 ◽  
Vol 16 (8) ◽  
pp. 3061-3074 ◽  
Author(s):  
J. L. Gunnink ◽  
J. H. A. Bosch ◽  
B. Siemon ◽  
B. Roth ◽  
E. Auken

Abstract. Airborne electromagnetic (AEM) methods supply data over large areas in a cost-effective way. We used Artificial Neural Networks (ANN) to classify the geophysical signal into a meaningful geological parameter. By using examples of known relations between ground-based geophysical data (in this case electrical conductivity, EC, from electrical cone penetration tests) and geological parameters (presence of glacial till), we extracted learning rules that could be applied to map the presence of a glacial till using the EC profiles from the airborne EM data. The saline groundwater in the area was obscuring the EC signal from the till but by using ANN we were able to extract subtle and often non-linear, relations in EC that were representative of the presence of the till. The ANN results were interpreted as the probability of having till and showed a good agreement with drilling data. The glacial till is acting as a layer that inhibits groundwater flow, due to its high clay-content, and is therefore an important layer in hydrogeological modelling and for predicting the effects of climate change on groundwater quantity and quality.


2014 ◽  
Vol 1 (2) ◽  
pp. 73-87 ◽  
Author(s):  
Hans Rönnqvist ◽  
Peter Viklander
Keyword(s):  

1964 ◽  
Vol 7 (1) ◽  
pp. 0038-0041 ◽  
Author(s):  
Joseph Bornstein

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1556
Author(s):  
Robert P. Richard ◽  
Evan S. Kane ◽  
Dustin R. Bronson ◽  
Randall K. Kolka

Sandy outwash and glacial till soils compose large amounts of public forestland due to historically poor agricultural yields. The outwash soils have low fertility, poor nutrient retention and are restricted from whole-tree harvesting (WTH) in some states, whereas the glacial till has medium nutrient retention and fertility, and is unrestricted from WTH. To assess the long-term sustainability of harvesting, a nutrient budget was constructed from field measurements, the National Cooperative Soil Survey (NCSS) database, and literature values for stem-only harvesting (SOH) and WTH at a 45-year rotation length and 11 rotations were simulated. The budgets showed that SOH and WTH recovery years, or the time necessary for the inputs to match outputs through leaching and one harvest, exceeded common rotation lengths for both soil types under all weathering scenarios, and the average WTH reduced the total available rotations by one harvest. The large variation in soil nutrient pools and harvest removals complicated the ability to identify the difference between SOH and WTH early in the model, but differences became apparent with sequential harvests. The recovery years were 2–20 times the 45-year rotation length under all weathering rates. Taken together, models in this study bridge the gap between short- and long-term studies and bring into question the sustainability of WTH and SOH practices on nutrient-poor soils.


Sign in / Sign up

Export Citation Format

Share Document