ASSESSMENT OF MAXIMUM INSTANT DISCHARGE OF VARIOUS FREQUENCY AT UNGAUGED MOUNTAINOUS RIVER KHEMCHIK (TUVA REPUBLIC) BASED ON MATHEMATICAL MODELLING

2019 ◽  
Vol 13 (2) ◽  
pp. 36-51 ◽  
Author(s):  
O. M. Makarieva ◽  
N. V. Nesterova ◽  
G. P. Yampolsky ◽  
E. Y. Kudymova

Abstract: the article presents the results of application of distributed deterministic hydrological model Hydrograph for estimation of maximum discharge values of different frequency at the ungauged catchment of the Khemchik River (Khemchik village, Tuva Republic). The catchment area is 1750 km2 , the average and maximum elevation — 2200 and 3600 m, respectively. Due to the lack of detailed information, a schematization of the catchment and the parameterization of the model are proposed, based on general ideas about the water balance and the processes of runoff formation of the main landscapes — rocky talus, coniferous forest and steppe. Parameters and algorithms are verified based on the results of streamflow modeling at two studied catchments: the Tapsy River — Kara-Khol (302 km2 ) and the Khemchik River — Iyme (25500 km2 ). Modelling of runoff formation processes with daily time step for the Khemchik River — Khemchik village was conducted for the period 1966–2012 using observational data at Teeli meteorological station. For the transition from daily to instant discharges, the dependence of the observed values of instant and daily streamflow at the studied gauges has been applied. On the basis of simulated discharge series, the frequency curve was built and the obtained curve was compared with the calculation data according to the standard methodology SP 33-101-2003 “Determination of the main calculated hydrological characteristics” using the analogue river. Simulated maximum instant discharges for entire frequency interval of up to 1% are 1.3–5 times higher than the values obtained by standard methodology SP 33-101-2003. The results of model calculations is indirectly confirmed by the evidences of regular flooding of the Khemchik village provided by the Ministry of Emergency Situations of the Tuva Republic, which is not predicted by the values obtained by the standard methods.

2020 ◽  
Vol 163 ◽  
pp. 01014
Author(s):  
Anastasiia Zemlyanskova ◽  
Olga Makarieva ◽  
Nataliia Nesterova ◽  
Alexandra Fedorova

The distributed hydrological model Hydrograph was applied to simulate runoff formation processes in the mountainous conditions of the Crimean Peninsula. The study object is the Derekoyka River watershed (49.7 km2, the altitude difference 14-1398 m). Streamflow simulations were carried out with daily time step for the periods of 1967-1988 and 2016-2017 using the data of two weather stations Ai-Petri and Yalta. Though mean and median Nash-Sutcliffe efficiency was only 0.28 and 0.33, in some years it exceeded 0.60. The analysis has shown that the precipitation input interpolated from weather stations was not always adequate affecting the quality of streamflow simulations. The results of the model verification were accepted as satisfactory. The hazardous flood of 2018 in Yalta was simulated. According to simulations, maximum daily discharge amounted to 14.9 m3/s and exceeded previous maximum value observed in 1962. The results confirm the possibility to apply the model Hydrograph to assess the water balance and hydrological characteristics in the mountainous part of the Crimean Peninsula. We suggest that provided by proper precipitation data the model can be used for short-term forecasts of hazardous floods in the region.


2012 ◽  
Vol 9 (7) ◽  
pp. 8335-8374 ◽  
Author(s):  
M. T. H. van Vliet ◽  
J. R. Yearsley ◽  
W. H. P. Franssen ◽  
F. Ludwig ◽  
I. Haddeland ◽  
...  

Abstract. Realistic estimates of daily streamflow and water temperature are required for effective management of water resources (e.g. electricity and drinking water production) and freshwater ecosystems. Although hydrological and process-based water temperature modelling approaches have been successfully applied to small catchments and short time periods, much less work has been done at large spatial and temporal scales. We present a physically-based modelling framework for daily river discharge and water temperature simulations applicable to large river systems on a global scale. Model performance was tested globally at 1/2° × 1/2° spatial resolution and a daily time step for the period 1971–2000. We made specific evaluations on large river basins situated in different hydro-climatic zones and characterized by different anthropogenic impacts. Effects of anthropogenic heat discharges on simulated water temperatures were incorporated by using global gridded thermoelectric water use data sets and representing thermal discharges as point sources into the heat-advection equation. This resulted in a significant increase in the quality of the water temperature simulations for thermally polluted basins (Rhine, Meuse, Danube and Mississippi). Due to large reservoirs in the Columbia which affect streamflow and thermal regimes, a reservoir routing model was used. This resulted in a significant improvement in the performance of the river discharge and water temperature modelling. Overall, realistic estimates were obtained at daily time step for both river discharge (median normalized BIAS = 0.3; normalized RMSE = 1.2; r = 0.76) and water temperature (median BIAS = −0.3 °C; RMSE = 2.8 °C; r = 0.91) for the entire validation period, with similar performance during warm, dry periods. Simulated water temperatures are sensitive to headwater temperature, depending on resolution and flow velocity. A high sensitivity of water temperature to river discharge (thermal capacity) was found during warm, dry conditions. The modelling approach has potential to be used for risk analyses and studying impacts of climate change and other anthropogenic effects (e.g. thermal pollution, dams and reservoir regulation) on large rivers.


2012 ◽  
Vol 16 (11) ◽  
pp. 4303-4321 ◽  
Author(s):  
M. T. H. van Vliet ◽  
J. R. Yearsley ◽  
W. H. P. Franssen ◽  
F. Ludwig ◽  
I. Haddeland ◽  
...  

Abstract. Realistic estimates of daily streamflow and water temperature are required for effective management of water resources (e.g. for electricity and drinking water production) and freshwater ecosystems. Although hydrological and process-based water temperature modelling approaches have been successfully applied to small catchments and short time periods, much less work has been done at large spatial and temporal scales. We present a physically based modelling framework for daily river discharge and water temperature simulations applicable to large river systems on a global scale. Model performance was tested globally at 1/2 × 1/2° spatial resolution and a daily time step for the period 1971–2000. We made specific evaluations on large river basins situated in different hydro-climatic zones and characterized by different anthropogenic impacts. Effects of anthropogenic heat discharges on simulated water temperatures were incorporated by using global gridded thermoelectric water use datasets and representing thermal discharges as point sources into the heat advection equation. This resulted in a significant increase in the quality of the water temperature simulations for thermally polluted basins (Rhine, Meuse, Danube and Mississippi). Due to large reservoirs in the Columbia which affect streamflow and thermal regimes, a reservoir routing model was used. This resulted in a significant improvement in the performance of the river discharge and water temperature modelling. Overall, realistic estimates were obtained at daily time step for both river discharge (median normalized BIAS = 0.3; normalized RMSE = 1.2; r = 0.76) and water temperature (median BIAS = −0.3 °C; RMSE = 2.8 °C; r = 0.91) for the entire validation period, with similar performance during warm, dry periods. Simulated water temperatures are sensitive to headwater temperature, depending on resolution and flow velocity. A high sensitivity of water temperature to river discharge (thermal capacity) was found during warm, dry conditions. The modelling approach has potential to be used for risk analyses and studying impacts of climate change and other anthropogenic effects (e.g. thermal pollution, dams and reservoir regulation) on large rivers.


2010 ◽  
Vol 25 (10) ◽  
pp. 1542-1557 ◽  
Author(s):  
Ashraf El-Sadek ◽  
Max Bleiweiss ◽  
Manoj Shukla ◽  
Steve Guldan ◽  
Alexander Fernald

1994 ◽  
Vol 74 (1) ◽  
pp. 37-42 ◽  
Author(s):  
D. W. Stewart ◽  
L M. Dwyer

Estimation of leaf area is a major component of plant growth models. In this study, a model was developed to calculate field-grown maize leaf area expansion and senescence on an individual leaf basis. The model began with an equation, based on cumulative growing degree-days from emergence, to initiate leaf area development. The model required daily values of maximum and minimum air temperature, solar radiation and precipitation, had essentially a daily time step with day and night modes, and could be run on commonly accessible computers (micros to mainframes). The objective of the development of the model was to assist plant breeders in optimizing leaf number and shape for adaptation to specific environments. Key words: Leaf area and number, temperature, phenological development


2008 ◽  
Vol 9 (3) ◽  
pp. 444-460 ◽  
Author(s):  
Jongyoun Kim ◽  
Terri S. Hogue

Abstract This paper outlines the development of a continuous, daily time series of potential evapotranspiration (PET) using Moderate Resolution Imaging Spectroradiometer (MODIS) sensor data from the Terra satellite platform. The approach is based on the Priestley–Taylor equation, incorporating a daily net radiation model during cloudless days. A simple algorithm using “theoretical clear-sky” net radiation (incorporating daily cloud fraction and cloud optical thickness) and PET is then used to estimate net radiation and PET under cloudy conditions. The method requires minimal ground-based observations for initial calibration of regional radiation algorithm coefficients. Point-scale comparisons are undertaken at four flux-tower sites in North America covering a range of hydroclimatic conditions and biomes. Preliminary results at the daily time step for a 4-yr period (2001–04) show good correlation (R2 = 0.89) and low bias (0.34 mm day−1) for three of the more humid sites. Results are further improved when aggregated to the monthly time scale (R2 = 0.95, bias = 0.31 mm day−1). Performance at the semiarid site is less satisfactory (R2 = 0.95, bias = 2.05 mm day−1 at the daily time step). In general, the MODIS-based daily PET estimates derived in this study are promising and show the potential for use in theoretical and operational water resource studies in both gauged and ungauged basins.


Sign in / Sign up

Export Citation Format

Share Document